###
气象:2025,51(12):1645-1655
本文二维码信息
码上扫一扫!
基于序列融合编码器的冬季降水相态深度学习预报模型研究
李明,谌芸,曹恒煜,尹常红,姚望玲,王义琴
(武汉市气象台,武汉 430040; 国家气象中心,北京 100081; 武汉国家基本气象观测站,武汉 430040)
Deep Learning Prediction Model for Winter Precipitation Phase Based on Sequential Fusion Encoder
LI Ming,CHEN Yun,CAO Hengyu,YIN Changhong,YAO Wangling,WANG Yiqin
(Wuhan Meteorological Observatory, Wuhan 430040; National Meteorological Centre, Beijing 100081; Wuhan National Basic Meteorological Station, Wuhan 430040)
摘要
图/表
参考文献
相似文献
本文已被:浏览 0次   下载 0
投稿时间:2024-09-25    修订日期:2025-07-11
中文摘要: 本文构建了一种基于序列融合编码器的深度学习模型,用于冬季降水相态预报。该模型整合卷积神经网络、卷积门控循环单元和Transformer的优势,可自动学习和提取气象数据中的复杂特征,处理非线性关系及大规模数据集。采用2010—2024年武汉站逐小时降水观测和ERA5再分析数据,选取9层(1000~500 hPa)气温、位势高度等60个通道格点数据作为预报因子,通过分钟数据增强(雨30 min、雨夹雪1 min、雪5 min间隔重采样)解决样本不平衡问题,最终获得19 932个样本。试验结果显示,模型对固态降水(雪、雨夹雪)预报性能优异,训练集F1分数达0.92~0.93,验证集为0.67~0.68,但在降水相态快速转换时的识别能力有待增强。通过2024年2月两次复杂天气过程检验,模型可作为数值预报补充,为冬季降水相态智能预报提供高效方案,提升台站预报能力。
Abstract:This paper constructs a deep learning model based on the sequential fusion encoder (SFE) for forecasting winter precipitation phase. The model integrates the advantages of convolutional neural network (CNN), convolutional gated recurrent unit (ConvGRU), and Transformer. It can conduct automatic learning and extraction of complex features from meteorological data, handle non-linear relationships, and process large-scale datasets. We utilize hourly precipitation observation data from Wuhan Station in 2010-2024 and ERA5 reanalysis data, select 60-channel grid data (including temperature and geopotential height) from 9 atmospheric layers (1000-500 hPa) as predictors. To address sample imbalance, minute-level data augmentation is employed, involving resampling at intervals of 30 min for rain, 1 min for sleet, and 5 min for snow. Finally, a sample size of 19 932 is obtained. Test results show that this model performs excellently in forecasting solid precipitation (snow and sleet), with F1-scores of 0.92-0.93 in the training set and 0.67-0.68 in the validation set. However, its ability to identify rapid transitions between precipitation phases needs to be improved. Verified by two complex weather processes in February 2024, the model is found to be able to serve as a supplement to numerical prediction and provide an efficient solution for intelligent forecasting of winter precipitation phase, aiding in enhancing the forecasting capabilities of meteorological stations.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2023YFC3007502)、中国气象局2025年湖北复盘专项(FPZJ2025-082)、武汉气象科技联合项目(2024020901030453、2024020901030454)共同资助
引用文本:
李明,谌芸,曹恒煜,尹常红,姚望玲,王义琴,2025.基于序列融合编码器的冬季降水相态深度学习预报模型研究[J].气象,51(12):1645-1655.
LI Ming,CHEN Yun,CAO Hengyu,YIN Changhong,YAO Wangling,WANG Yiqin,2025.Deep Learning Prediction Model for Winter Precipitation Phase Based on Sequential Fusion Encoder[J].Meteor Mon,51(12):1645-1655.