###
气象:2025,51(12):1635-1644
本文二维码信息
码上扫一扫!
基于长短期记忆网络的天津市高速公路路面温度预报方法研究
张希帆,任丽媛,谷皓东
(天津市气象服务中心,天津 300074)
Research on Pavement Temperature Forecasting Method for Tianjin Expressway Based on Long Short-Term Memory Network
ZHANG Xifan,REN Liyuan,GU Haodong
(Tianjin Meteorological Service Center, Tianjin 300074)
摘要
图/表
参考文献
相似文献
本文已被:浏览 0次   下载 0
投稿时间:2024-12-25    修订日期:2025-07-30
中文摘要: 基于天津市高速公路沿线交通气象站2018—2023年逐10 min实时观测资料,使用长短期记忆网络模型预报未来3 h 的路面温度,评估分析了模型在极端路面温度情况下的预报效果和空间迁移适用性。结果表明:用步长为3 h的实况数据作为输入,模型预报效果最好;模型能较为准确地预报路面温度,预报能力随预报时效延长而下降,平均绝对误差为0.38~2.21℃,均方根误差为0.63~3.31℃,准确率为76.15%~99.48%;模型能准确地预报路面极端低温发生的时间和极值,1 h预报的准确率控制在90%左右;对于路面极端高温,模型的1 h预报也能模拟出路面高温的变化趋势和极值时间;模型具有一定的空间迁移能力,迁移后模型预报平均准确率70%以上,平均偏差不超过3℃;在一定范围内,相比于迁移距离,模型的本站预报能力对迁移后模型的预报表现有更大影响。
Abstract:Based on the 10 min observation data from the traffic meteorological stations along the Tianjin expressway during 2018-2023, a long short-term memory network model is used to forecast the pavement temperature in the next 3 h, and the forecasting effect and spatial transfer applicability of the model in the case of extreme pavement temperatures are evaluated and analyzed. The results show that the model forecasting effect is the best when the observation data of the time step 3 h are used as the input. The model can forecast the pavement temperature accurately, and the forecasting ability decreases with the extension of the forecast lead time, with the mean absolute error of 0.38-2.21℃, the root mean square error of 0.63-3.31℃, and the accuracy rate of 76.15%-99.48%. The model can accurately forecast the occurrence time and extreme values of extreme low temperature events on pavements, with the forecasting accuracy being about 90% for the 1 h forecast. For extreme high pavement temperature, the 1 h forecast of the model can also simulate the variation trend and the time for extreme high pavement temperature to occur. The model has a certain spatial transfer ability, and the average accuracy of the model forecast is more than 70% after the transfer, with an mean absolute deviation less than 3℃. Within a certain range, compared with the transfer distance, the forecasting ability of the model at its original station has a greater impact on the forecasting performance of the model after transfer.
文章编号:     中图分类号:    文献标志码:
基金项目:天津市气象局一般课题(202441ybxm28)资助
引用文本:
张希帆,任丽媛,谷皓东,2025.基于长短期记忆网络的天津市高速公路路面温度预报方法研究[J].气象,51(12):1635-1644.
ZHANG Xifan,REN Liyuan,GU Haodong,2025.Research on Pavement Temperature Forecasting Method for Tianjin Expressway Based on Long Short-Term Memory Network[J].Meteor Mon,51(12):1635-1644.