###
气象:2025,51(8):914-927
本文二维码信息
码上扫一扫!
降水预报机器学习订正及其在分类型降水测试的效果研究
钟琦,梁红丽,代刊,方祖亮,申莉莉,侯邵禹
(中国气象局气象干部培训学院, 北京 100081; 国家气象中心, 北京 100081; 河北省气象灾害防御和环境气象中心,石家庄 050021; 河北省人工影响天气中心,石家庄 050021)
Study on Machine Learning Correction of Precipitation Forecast and Its Validation on Two Types of Precipitation
ZHONG Qi,LIANG Hongli,DAI Kan,FANG Zuliang,SHEN Lili,HOU Shaoyu
(CMA Training Centre, Beijing 100081; National Meteorological Centre, Beijing 100081; Hebei Meteorological Disaster Prevention and Environmental Meteorology Centre, Shijiazhuang 050021; Hebei Weather Modification Centre, Shijiazhuang 050021)
摘要
图/表
参考文献
相似文献
本文已被:浏览 7次   下载 118
投稿时间:2024-12-31    修订日期:2025-07-18
中文摘要: 强降水是对我国国计民生影响最为广泛的灾害性天气之一,其精准预报也是最具挑战的科学问题之一,湿物理过程的多尺度、非线性特征使数值预报和客观订正处理降水问题比处理一般气象要素困难得多。文章以京津冀地区3 h累计降水量为对象,基于站点观测和数值模式预报,通过降水样本构建和采样、降水相关物理特征输入、使用残差训练等策略,探索了机器学习算法LightGBM应用于降水预报订正的效果。结果显示,面对降水样本的长尾分布难题,构建数据集时综合考虑保持降水的真实分布,同时适度增大较强量级降水样本的比例,是提升强量级降水订正效果的关键一环。独立测试集的统计检验表明,LightGBM订正方案在所有阈值降水的客观评分均较原模式预报显著提升,且提升率随降水阈值增大而增加。分类型降水的统计检验和个例评估显示,LightGBM订正方案在不同类型降水预报均体现出强度和落区的综合调整,其中:强天气系统强迫类型降水样本数量相对占优,在各降水阈值订正效果均较显著;而弱天气系统强迫类型降水订正在≥15 mm阈值时较难获得提升,落区的调整也更具挑战。这说明降水样本的不平衡分布仍是机器学习订正面临的挑战,但机器学习体现出对模式预报准确率更低的较大量级降水的订正潜力,即模式预报能力越低,机器学习订正提升的空间和幅度越大。特征重要性分析表明,输入与降水密切相关的动力、热力和水汽等物理特征,对提升LightGBM订正评分具有正贡献。
Abstract:Heavy precipitation is one of the most widespread hazardous weather affecting the socioeconomic stability and people’s livelihoods in China. Accurately forecasting such events poses significant scientific challenges. The multi-scale nonlinear characteristics of moist physical processes make numerical weather prediction and objective corrections for precipitation become considerably more difficult than for other meteorological variables like wind and temperature. Utilizing station observations and numerical model forecasts, this paper explores the application effect of machine learning algorithm (LightGBM) in correcting 3 h accumulated precipitation forecasts for the Beijing-Tianjin-Hebei Region through strategies such as constructing and sampling precipitation datasets, inputting relevant physical features, and training on residuals. The results demonstrate that, to address the long-tailed distribution challenge of precipitation samples, when constructing the dataset it is crucial to comprehensively consider maintaining the true distribution of precipitation while moderately increasing the proportion of samples with stronger precipitation intensities. This is a key step in enhancing the correction effectiveness of heavy precipitation. Statistical tests on the independent test set show that the LightGBM correction scheme achieves significant improvements in skill scores for precipitation ranging from 0.1 mm to 20 mm compared to the raw model forecasts, and the increase rate ascends upward as the threshold rises. Statistical tests and individual case evaluations of precipitation by type show that the LightGBM correction scheme presents comprehensive adjustments in rainfall intensity and fall area in different types of precipitation forecasts. Among them, the number of forced precipitation samples by severe weather systems is relatively superior, and the correction effects on each precipitation threshold are more remarkable. Additionally, the evaluation of classified heavy precipitation indicates that it is more challenging to achieve improvements in the correction of convective heavy precipitation forced by weak weather systems, in particular in the cases with precipitation ≥15 mm. The adjustment of the fall area of precipitation is more challenging. This suggests that the unbalanced distribution of precipitation samples remains a challenge for machine learning correction. However, machine learning has shown particular promise for correcting larger magnitudes of heavy precipitation events with lower forecast accuracy from the model, that is, the lower the model’s forecast ability, the greater the room and extent for the correction improvement of machine learning. The analysis of feature importance shows that the input of physical features such as dynamics, thermodynamics and water vapor, which are closely related to precipitation, has a positive contribution to enhancing the correction score of LightGBM.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目(U2142214、42275013)、中国气象局重点创新团队智能预报技术团队项目(CMA2022ZD04)、国家重点研发计划(2021YFC3000905)和河北省重点研发计划(23375401D)共同资助
引用文本:
钟琦,梁红丽,代刊,方祖亮,申莉莉,侯邵禹,2025.降水预报机器学习订正及其在分类型降水测试的效果研究[J].气象,51(8):914-927.
ZHONG Qi,LIANG Hongli,DAI Kan,FANG Zuliang,SHEN Lili,HOU Shaoyu,2025.Study on Machine Learning Correction of Precipitation Forecast and Its Validation on Two Types of Precipitation[J].Meteor Mon,51(8):914-927.