###
气象:2025,51(8):901-913
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
大语言模型在天气预报中的应用探讨
代刊,高嵩,孟宏欣,唐健
(国家气象中心,北京 100081)
Exploration of the Application of Large Language Models in Weather Forecasting
DAI Kan,GAO Song,MENG Hongxin,TANG Jian
(National Meteorological Centre, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 13次   下载 123
投稿时间:2025-01-13    修订日期:2025-06-29
中文摘要: 本文旨在探讨大语言模型(LLM)在天气预报中的应用潜力及其面临的挑战。文章分析LLM在气象及相关行业应用,包括知识检索、基座模型、诊断分析、工具调用及文字生成等应用场景,指出LLM在提升天气预报的精准度和业务智能化水平方面有巨大潜力。LLM通过高效处理海量气象知识、整合跨领域多源信息、生成定制化预报产品等,为预报员提供强大的辅助工具。通过构建高质量的气象语料库、优化基准测试框架、结合外部工具等,可进一步提升LLM在天气预报中的应用效果。LLM为气象领域带来了新的技术机遇,但其广泛应用仍需在语料质量、模型优化及人机协作等方面持续探索与完善。LLM在大气运动时空理解、“偏见”与“幻觉”等方面仍存在局限性,需通过数据清洗、去偏见及微调、检索增强生成等技术加以改进。
Abstract:This article aims to explore the potential application and challenges of large language model (LLM) in weather forecasting. Through analyzing LLM application in meteorology and related industries, including knowledge retrieval, foundation models, diagnostic analysis, tool calling and text generation, the article demonstrates that LLM has tremendous potentials in improving weather forecast accuracy and business intelligence. LLM serve as powerful assistive tools for forecasters by efficiently processing massive meteorological knowledge, integrating cross-domain multi-source information, and generating customized forecast products. The effectiveness of LLM in weather forecasting can be further enhanced by building high-quality meteorological corpora, optimizing benchmark testing frameworks, and incorporating external tools. While LLM brings new technological opportunities to the meteorological field, their widespread application still requires continuous exploration and improvement in corpus quality, model optimization, and human-machine collaboration. Moreover, LLM still has limitations in understanding the spatio-temporal dynamics of atmospheric motions and issues with bias and hallucination, which need to be addressed through data cleaning, debiasing, fine-tuning, and retrieval-augmented generation techniques.
文章编号:     中图分类号:    文献标志码:
基金项目:中国气象局重点创新团队智能预报技术团队项目(CMA2022ZD04)资助
引用文本:
代刊,高嵩,孟宏欣,唐健,2025.大语言模型在天气预报中的应用探讨[J].气象,51(8):901-913.
DAI Kan,GAO Song,MENG Hongxin,TANG Jian,2025.Exploration of the Application of Large Language Models in Weather Forecasting[J].Meteor Mon,51(8):901-913.