本文已被:浏览 88次 下载 458次
投稿时间:2023-04-28 修订日期:2024-03-19
投稿时间:2023-04-28 修订日期:2024-03-19
中文摘要: 利用2021年1—12月实况观测数据及ECMWF确定性模式24 h预报数据中的中低层风速与温度产品,采用支持向量机回归方法构建我国近海阵风预报模型,以提升海上阵风预报服务能力。利用2022年1—9月数据进行独立样本检验,通过与阵风系数法的对比检验得出以下结论:不同高度层的风速及温度或垂直风速及温度的变化均会对阵风预报产生影响,因而造成仅考虑模式10 m风速预报的阵风系数法在某些情况下对于阵风的高估或低估。在阵风系数法的基础上加入高空气象要素信息所构建的预报模型,能够取得更好的预报效果。对于9级阵风,该模型的预报准确率为50%,明显高于阵风系数法的30%,对不同海域的大量级阵风同样具有较好的预报效果。在ECMWF确定性模式的10 m风速预报与实况存在一定偏差时,考虑了高空要素信息的支持向量机回归预报模型的阵风预报结果较阵风系数法更接近实况。
中文关键词: 支持向量机回归,阵风系数,阵风预报,近海地区
Abstract:Based on observations and the 24 h mid-low level wind speed and temperature forecast data from the ECMWF deterministic model in the period of January to December 2021, a support vector machine regression method was employed to develop a gust forecast model for the offshore areas of China so as to enhance the capability of predicting gusts at sea. Independent sample verification was conducted using data from January to September 2022, and a comparative analysis was performed against the gust factor method. The following conclusions were drawn. Changes in wind speed and temperature at different heights or vertical wind speed and temperature variations can all have an impact on gust forecasts. Consequently, relying solely on the 10 m wind speed forecast from the model, as done in the gust factor method, may lead to overestimation or underestimation of gusts in certain situations. The forecast model that incorporates upper-level meteorological elements based on the gust factor method can achieve better forecast performance. For gust of scale 9, the accuracy of this model is 50%, significantly higher than the 30% accuracy of the gust factor method. It also demonstrates good performance for gusts of large scales in different sea areas. When there is a certain deviation between the 10 m wind speed forecast from the ECMWF deterministic model and the observed wind speed, the gust forecast results of the support vector machine regression model, which considers upper-level element information, are closer to the observation compared to the result by the gust factor method.
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划(2021YFC3000905、2022YFC3004200)共同资助
Author Name | Affiliation |
HU Haichuan | National Meteorological Centre, Beijing 100081 |
DAI Kan | National Meteorological Centre, Beijing 100081 |
引用文本:
胡海川,代刊,2024.我国近海阵风预报研究[J].气象,50(6):711-722.
HU Haichuan,DAI Kan,2024.Research on Gust Forecasting in China’s Offshore[J].Meteor Mon,50(6):711-722.
胡海川,代刊,2024.我国近海阵风预报研究[J].气象,50(6):711-722.
HU Haichuan,DAI Kan,2024.Research on Gust Forecasting in China’s Offshore[J].Meteor Mon,50(6):711-722.