本文已被:浏览 132次 下载 746次
投稿时间:2022-09-29 修订日期:2023-10-26
投稿时间:2022-09-29 修订日期:2023-10-26
中文摘要: 以如东海上风电场升压站激光雷达测风资料为基础,提出了一种强风事件识别方法,设计并比较了三种预报强风事件识别方案。基于决策树和一元线性回归方法,分别开展了针对强风事件的订正方法研究。结果发现:三种预报强风事件识别方案中,等分位阈值方案明显更优,事件命中率达到76.1%,匹配时长命中率达到87.6%;采用消偏阈值方案和等分位阈值方案预报的强风事件时长会更接近观测强风事件时长;等分位阈值方案识别的事件基本可以覆盖到各次观测强风事件的全程;两个订正模型相对于模式预报都有一定提升与改进,其中决策树比一元线性回归模型更优,其平均绝对误差、相对误差和均方根误差明显更小。
中文关键词: 强风事件,数值预报,订正,决策树,一元线性回归
Abstract:Based on the wind speed observation data of Marine Booster Station in Rudong Wind Farm, this paper proposes a method of identifying gale event. Three identification schemes of gale event forecast are developed and compared through the determination of the crucial parameters. Then, based on the decision tree method and a single linear regression method, the correction methods for gale events are studied. The results show that the gale event forecast of equal cumulative frequency scheme is superior to other schemes, having the hit rate of 76.1% and the hit rate of matching duration of 87.6%. The duration of gale event forecast of eliminating deviation and equal cumulative frequency schemes are more in agreement with the observation data. Besides, the equal cumulative frequency scheme can cover the duration of every observation gale event, so it is good for proposing the beginning and end time of gale warning. The above-mentioned two correction methods can improve the forecast performance to a certain extent. However, the improvement done by the decision tree method is more obvious, for it can significantly reduce the MAE, RE, RMSE.
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划(2018YFC1507804)、中广核尖峰计划项目(001-GN-A-2021-SN-0239)共同资助
作者 | 单位 |
韩乐琼 | 北京玖天气象科技有限公司,北京 100081 华风气象传媒集团,北京 100081 |
何晓凤 | 华风气象传媒集团,北京 100081 |
张雪松 | 中广核风电有限公司,北京 100070 |
肖擎曜 | 北京玖天气象科技有限公司,北京 100081 华风气象传媒集团,北京 100081 |
陈笑 | 北京玖天气象科技有限公司,北京 100081 华风气象传媒集团,北京 100081 |
引用文本:
韩乐琼,何晓凤,张雪松,肖擎曜,陈笑,2023.强风事件识别及预报订正方法研究[J].气象,49(12):1542-1552.
HAN Leqiong,HE Xiaofeng,ZHANG Xuesong,XIAO Qingyao,CHEN Xiao,2023.Study of Approach in Identification and Modification of Gale Event Forecast[J].Meteor Mon,49(12):1542-1552.
韩乐琼,何晓凤,张雪松,肖擎曜,陈笑,2023.强风事件识别及预报订正方法研究[J].气象,49(12):1542-1552.
HAN Leqiong,HE Xiaofeng,ZHANG Xuesong,XIAO Qingyao,CHEN Xiao,2023.Study of Approach in Identification and Modification of Gale Event Forecast[J].Meteor Mon,49(12):1542-1552.