本文已被:浏览 332次 下载 1670次
投稿时间:2019-12-10 修订日期:2021-06-07
投稿时间:2019-12-10 修订日期:2021-06-07
中文摘要: 从预报员的审视角度分析及回顾2012年北京“7·21”极端暴雨天气过程中的气象服务,探讨这种天气形势下,是否应该以及如何应用最优决策模型辅助决策服务,以更好地做出决策判断、降低灾害风险。通过情景模拟的方式,对此次典型暴雨灾害过程中的气象服务决策进行诊断性分析,揭示在现有技术条件下,面对不确定性决策问题时,能否借助决策模型方法,在依据现有数据资料(中尺度数值预报结果、观测资料等),得出最优决策判断。模拟用“7·21”前一天的数值预报结果,进行事前暴雨洪涝灾害及暴雨泥石流灾害风险评估,结果显示“7·21”当天此两种灾害的风险均较大。结合历史灾情及“7·21”的预报雨量,也可判定“7·21”存在较大的暴雨灾害风险。选用贝叶斯方程算出的“7·21”当天有灾的后验概率仅为23.1%。但进一步分析有灾或无灾可导致的期望损失,发现无灾预报可导致的期望损失较大。分析判定“7·21”当天确实应该做出有灾的决策判断,并采取对应的“保守型气象服务方案”,可达到最优决策效果。决策模型分析得到的启示是,为减少重大气象服务过程中受不确定性天气预报的影响,在天气服务过程中,除了需要有一定的误报容忍度及应急准备外,还应提供天气预报及预警的不确定性信息,以供公众及行业用户做各自的决策判断选择,变确定性预报及预警模式为不确定性模式。
中文关键词: 贝叶斯,决策支持,极端天气气象服务方案,不确定性天气预报
Abstract:Based on the Bayesian model for decision supporting, the decision making procedures in the meteorological service for the Beijing 21 July 2012 extra torrential rain are simulated and analyzed in this paper. The diagnosis in decision makings on the typical torrentail rain event try to prove its possibility of application in supporting decision making model (SDMM) to attain the optimal decision in solving the uncertainties problems of decision making, under the current condition of data resources (e.g., the mesoscale NWP system and observation data), weather forecasting and meteorological observing technological levels. With the NWP products on that day, the floods and debris flow risks both have been assessed to be high. Combine with the data of floods threshold and rainfalls recorded in the historical flood events and the predicted rainfall magnitude distribution on that day, a high torrential rain risk can also be recognized consequently. The posteriori probability deduced using the Bayesian model is only 23.1%. However, considering the expected losses (EL) gap in predicting severe weather and non-severe weather, the non-severe weather prediction EL can be obviously greater than the severe weather prediction EL. Therefore, the optimal decision making in that situation would have been to publish severe weather warning and pick the pessimistic scheme in the meteorological service advisably. The simulation of the meteorological service on the extra torrential rain day reveals that the tolerability to the severe weather forecasting and warning uncertainty can relieve the pressure on forecasters who are often afraid of giving false forecasting and warning. In additional to perfect emergency preparations, the uncertainty information could be published, and properly be delivered to the actual meteorological information users in weather forecasts, which ultimately helps to converte the deterministic weather forecasting mode into that of non-determinacy.
文章编号: 中图分类号:P458,P49 文献标志码:
基金项目:国家重点研发计划(2017YFC1502505)、国家自然科学基金项目(41875125)和北京师范大学重点实验室项目开发课题(2017-KF-23)共同资助
作者 | 单位 |
扈海波 | 北京城市气象研究院,北京 100089 |
梁旭东 | 中国气象科学研究院,北京 100081 |
王瑛 | 北京师范大学地表过程与资源生态国家重点实验室,北京 100086 |
张西雅 | 北京城市气象研究院,北京 100089 |
引用文本:
扈海波,梁旭东,王瑛,张西雅,2021.决策树模型辅助下灾害性天气的服务过程及决策分析——以北京“7·21”特大暴雨为个例[J].气象,47(10):1182-1192.
HU Haibo,LIANG Xudong,WANG Ying,ZHANG Xiya,2021.Decision Making on Meteorological Services Under Extreme Weather Condition Supported by Bayesian Model: a Case Study of the Beijing 21 July 2012 Extra Torrential Rain[J].Meteor Mon,47(10):1182-1192.
扈海波,梁旭东,王瑛,张西雅,2021.决策树模型辅助下灾害性天气的服务过程及决策分析——以北京“7·21”特大暴雨为个例[J].气象,47(10):1182-1192.
HU Haibo,LIANG Xudong,WANG Ying,ZHANG Xiya,2021.Decision Making on Meteorological Services Under Extreme Weather Condition Supported by Bayesian Model: a Case Study of the Beijing 21 July 2012 Extra Torrential Rain[J].Meteor Mon,47(10):1182-1192.