本文已被:浏览 900次 下载 2348次
投稿时间:2008-07-29 修订日期:2008-11-10
投稿时间:2008-07-29 修订日期:2008-11-10
中文摘要: 地质灾害成因复杂,其中以气象因素、地质地貌因素引发的地质灾害最为常见。以金华地
区为例,通过对金华市地质地貌条件及其对地质灾害点的调查,将全区划分为4个地质灾害
隐患风险等级的网格区域。在此基础上利用金华中尺度气象资料,采用BP神经网络模型,建
立地质灾害细网格预报模型,对该模型进行模拟和预报试验。结果表明,合理的隐患风险等
级分区能使预报模型更符合科学规律,而采用分布较细的中尺度资料作为预报因子能进一步
提高预报精度。模型的预报结果达到一定的可信度,为防灾减灾工作提供了科学依据。
Abstract:The causes of geological hazards are rather complex due to many influence factor
s, but they are mainly triggered by the change of weather conditions and affecte
d by geological and geomorphic conditions. Taking Jinhua area as an example, on
the basis of investigation about the geological and geomorphic conditions especi
ally in the disaster zone, four grid regions with different geological hazards
hidden risk level are plotted out. The fine grid forecast model of geological
hazards is tested to be reliable, which is based on BP neutral network and rain
fall data from mesoscale observation system. The method is proved to
fit in with scientific rule and can contribute to increase the forecast precis
ion. The forecast model will provide a tool for reducing the damage of hazards i
n this area.
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 |
蔡敏 | 浙江省金华市气象局, 321000 |
黄艳 | 浙江省金华市气象局, 321000 |
朱宵峰 | 浙江省金华市气象局, 321000 |
沈锦栋 | 浙江省金华市气象局, 321000 |
金培 | 浙江省金华市气象局, 321000 |
吴惠娟 | 浙江省金华市气象局, 321000 |
引用文本:
蔡敏,黄艳,朱宵峰,沈锦栋,金培,吴惠娟,2009.基于BP神经网络的地质灾害细网格预报模型[J].气象,35(7):95-100.
Cai Min,Huang Yan,Zhu Xiaofeng,Shen Jindong,Jin Pei,Wu Huijuan,2009.Fine Grid Forecast Model of Geological Hazards Based on BP Neutral Network[J].Meteor Mon,35(7):95-100.
蔡敏,黄艳,朱宵峰,沈锦栋,金培,吴惠娟,2009.基于BP神经网络的地质灾害细网格预报模型[J].气象,35(7):95-100.
Cai Min,Huang Yan,Zhu Xiaofeng,Shen Jindong,Jin Pei,Wu Huijuan,2009.Fine Grid Forecast Model of Geological Hazards Based on BP Neutral Network[J].Meteor Mon,35(7):95-100.