###
气象:2007,33(7):55-59
本文二维码信息
码上扫一扫!
用神经网络方法对雷达资料进行降水类型的分类
(中国气象科学研究院,北京 100081)
Precipitation Echo Classification of Radar Reflectivity with Artificial Neural Network
(Chinese Academy of Meteorological Sciences, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 873次   下载 1942
投稿时间:2006-03-13    修订日期:2007-04-28
中文摘要: 利用不依赖先验统计模型的多层前馈神经网络模型对合肥的新一代S波段A系列雷达20 01—2003年的降水资料进行了三种降水类型的分类,并将训练完成后的网络应用于一次降水 过程。利用单隐层的多层前馈神经网络模型,在取适当参数时,已经可以较好地对雷达资料 进行对流云降水、层状云降水和混合云降水三种降水类型的分类。同时验证了:训练集样本 的数量和顺序、隐层神经元的数目以及学习率的选择等都将影响分类的成功率。
中文关键词: 神经网络  雷达资料  降水类型
Abstract:A Back Propagation (BP) Model of Artificial Neural Network (ANN) is used for th e partitioning of radar reflectivity into convective and stratiform cloud preci pitation classifications with the CINRAD SA data from 2001 to 2003 in Hefei. Th e trained ANN is applied in a precipitation process. It is proved that the singl e hide layer BP model of ANN can be used to classify the different precipitatio n echoes with a high success rate. It is also validated that: the success rate is influenced by following factors: the amount and the in put order of the tr aining database, the nerve cell number of the hided layer and the choice of th e learning rate.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
王静,程明虎,2007.用神经网络方法对雷达资料进行降水类型的分类[J].气象,33(7):55-59.
Wang Jing,Cheng Minghu,2007.Precipitation Echo Classification of Radar Reflectivity with Artificial Neural Network[J].Meteor Mon,33(7):55-59.