###
气象:2025,51(11):1335-1352
本文二维码信息
码上扫一扫!
减少预报不确定性,提高预报能力——集合预报的发展和应用
朱跃建,代刊,唐健
(中国气象局地球系统数值预报中心,北京 100081; 中国气象科学研究院灾害天气科学与技术全国重点实验室,北京 100081; 国家气象中心,北京 100081)
Reducing Forecast Uncertainty and Improving Forecasting Capability—A Review of the Development and Application of Ensemble Prediction
ZHU Yuejian,DAI Kan,TANG Jian
(CMA Earth System Modeling and Prediction Centre, Beijing 100081; State Key Laboratory of Severe Weather Meteorological Science and Technology, Chinese Academy of Meteorological Sciences, Beijing 100081; National Meteorological Centre, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 7次   下载 32
投稿时间:2025-04-23    修订日期:2025-08-21
中文摘要: 本文回顾了集合预报的发展历程、关键技术和应用价值。集合预报源于对大气非线性与混沌特性的认知,自20世纪60年代Lorenz提出“蝴蝶效应”后,通过在数值预报中引入多扰动试验来量化预报不确定性。初始扰动技术从繁殖增量法、奇异向量法到集合卡尔曼滤波等方法,模式扰动技术则包括随机动力学扰动、随机物理参数化扰动及多物理方案集合等。国际主要气象中心于90年代初相继建立了全球和区域集合预报系统。通过统计后处理技术,集合预报可生成多种概率预报产品,显著提升了极端天气预警的准确性和时效性。近年来,以Google SEEDS等为代表的AI集合预报模型取得突破,以更低成本实现更优预报性能。未来集合预报将向物理模式与AI结合的新范式发展,进一步提升预报能力。
Abstract:This paper reviews the development history, key technologies, and application value of ensemble prediction, which originated from the understanding of atmospheric nonlinearity and chaotic characteristics. Since Lorenz proposed the “butterfly effect” in the 1960s, it has quantified forecast uncertainty by introducing multiple perturbation experiments into numerical weather prediction. Initial perturbation techniques have evolved from breeding vectors and singular vectors to ensemble Kalman filtering, while model perturbation techniques include stochastic kinetic energy backscatter, stochastic physics parameterization perturbations, and multi-physics ensembles. In the early 1990s, major international meteorological centers successively established global and regional ensemble prediction systems. Through statistical post-processing techniques, ensemble prediction systems have generated various probabilistic forecast products, significantly improving the accuracy and timeliness of extreme weather warnings. In recent years, artificial intelligence (AI)-based ensemble models represented by Google SEEDS etc. have achieved breakthroughs, delivering superior forecast performance at lower computational costs. Future ensemble prediction will develop toward a new paradigm combining physical models with AI to further enhance the forecasting capabilities.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金气象联合基金项目(U2442221)、国家自然科学基金面上项目(42375152)和中国气象局重点创新团队智能预报技术团队项目(CMA2022ZD04)共同资助
引用文本:
朱跃建,代刊,唐健,2025.减少预报不确定性,提高预报能力——集合预报的发展和应用[J].气象,51(11):1335-1352.
ZHU Yuejian,DAI Kan,TANG Jian,2025.Reducing Forecast Uncertainty and Improving Forecasting Capability—A Review of the Development and Application of Ensemble Prediction[J].Meteor Mon,51(11):1335-1352.