###
气象:2025,51(6):645-659
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
热带气旋外雨带长生命史对流尺度上升运动的演变机制
方俏娴,李青青,伍红雨,程晶晶,梁秀姬
(广东省气候中心,广州 510641; 南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044; 南京信息工程大学大气科学学院,南京 210044; 南京信息工程大学太平洋台风研究中心和气象灾害教育部重点实验室,南京 210044; 福建省漳州市气象局,漳州 363000; 广东省珠海市公共气象服务中心,珠海 519000)
Evolution Mechanism of a Long Lifespan Convective-Scale Updraft in Outer Rainband of Sheared Tropical Cyclone
FANG Qiaoxian,LI Qingqing,WU Hongyu,CHENG Jingjing,LIANG Xiuji
(Guangdong Climate Center, Guangzhou 510641; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044; School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044;Pacific Typhoon Research Center and Key Laboratory of Meteorological Disaster of the Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044; Zhangzhou Meteorological Office of Fujian Province, Zhangzhou 363000; Zhuhai Public Meteorological Service Center of Guangdong Province, Zhuhai 519000)
摘要
图/表
参考文献
相似文献
本文已被:浏览 0次   下载 0
投稿时间:2024-02-29    修订日期:2025-03-06
中文摘要: 利用理想数值模拟资料,开展了热带气旋外雨带长生命史对流尺度上升运动演变机制的个例研究。选取的个例起源于热带气旋外雨带顺垂直风切变方向的右侧,其垂直质量输送具有双峰时间演变特征,存在两次增强阶段,生命史长达2.5 h。结果表明:强垂直风切变和低层高值相当位温为上升运动长生命史的维持提供了有利环境,邻近对流单体的发生发展通过调节相当位温的局地变化造成上升运动强度的不同响应。上升运动的两次增强阶段均是正热力浮力和正浮力扰动气压垂直梯度力主导,但两次增强机制存在区别:首次增强阶段邻近对流单体的发展引起低层相当位温升高,同时上升运动倾斜增大,水凝物粒子持续增长释放潜热引起热力浮力显著增大,因此垂直速度较大;二次增强阶段前期新的邻近对流单体的发生发展增大了低层相当位温,但随后邻近对流单体发展成熟和消亡,造成下沉运动增强和局地相当位温降低,热力浮力和垂直速度较小。与中纬度普通对流单体的减弱机制类似,减弱阶段上升运动倾斜较小,下沉运动在上升运动下方形成并发展,该下沉运动和其他邻近对流单体的下沉运动将低值相当位温输送至低层形成近地面冷池,热力浮力减小,负热力浮力和降水拖曳作用导致上升运动减弱。热力浮力、浮力扰动气压垂直梯度力和降水拖曳作用的不平衡过程是上升运动长时间演变的主要机制,但也不可忽视上升运动的倾斜大小。
Abstract:This study investigates the evolution mechanism of a long-life convective-scale updraft in outer rainband of numerically simulated sheared tropical cyclone (TC). The updraft originates from the down-shear right quadrant of outer rainband within a sheared TC with a lifespan of 2.5 h. This updraft undergoes two strengthening processes and displays complex evolutionary characteristics with two peaks in vertical mass transport. The results show that strong localized vertical wind shear and low-level high-value equivalent potential temperature are the main favorable ambient factors for an updraft long lifespan. The strengthening and weakening of neighboring convective cells lead to different responses to updraft intensity by adjusting the variation of local equivalent potential temperature. The vertical momentum budget suggests that an updraft grows when it is dominated by positive buoyancy pressure gradient acceleration and positive thermal buoyancy, but there exist differences between the two strengthening mechanisms. In the first strengthening stage, the development of neighboring convective cells causes the rise in the equivalent potential temperature at lower levels. Moreover, the increase in updraft tilt and the latent heating lead to a significant increase in thermal buoyancy, resulting in a larger vertical velocity. In the early second strengthening stage, the occurrence and development of new convective cells in the vicinity of the focused updraft induce the rise in localized equivalent potential temperature. Subsequently, however, the mature and dissipation of these neighboring convective cells lead to the strengthened downward motion and the decreased localized equivalent potential temperature, which makes smaller thermal buoyancy and smaller vertical velocity. Analogous to the weakening mechanism of convective cells in mid-latitudes, during the weakening phase, the focused updraft exhibits a decrease in tilt, and then forces a downdraft directly beneath it. This downdraft and downdrafts of neighboring convective cells carry low-value equivalent potential temperature toward the lower layers, forming a surface cold pool. Consequently, thermal buoyancy tends to decrease suppressing the growth of the focused updraft. In addition, the negative contribution of water loading is harmful to the development of the focused updraft. The imbalance among thermal buoyancy, buoyancy pressure gradient acceleration, and water loading constitutes the primary physical mechanism responsible for the prolonged evolution of updraft. At the same time, a tilted updraft structure can also influence the development of updraft.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目(U2342202、42175005)、广东省气象局科技项目(GRMC2023Q41)和广东省气候中心科研项目(QH202403)共同资助
引用文本:
方俏娴,李青青,伍红雨,程晶晶,梁秀姬,2025.热带气旋外雨带长生命史对流尺度上升运动的演变机制[J].气象,51(6):645-659.
FANG Qiaoxian,LI Qingqing,WU Hongyu,CHENG Jingjing,LIANG Xiuji,2025.Evolution Mechanism of a Long Lifespan Convective-Scale Updraft in Outer Rainband of Sheared Tropical Cyclone[J].Meteor Mon,51(6):645-659.