本文已被:浏览 13次 下载 49次
投稿时间:2024-05-31 修订日期:2025-01-13
投稿时间:2024-05-31 修订日期:2025-01-13
中文摘要: 2022年5月21日至6月21日期间,华南地区发生了近10年来最强的“龙舟水”。此次“龙舟水”极端性强、累计降水量大、强降水过程频繁,造成了重大经济损失。选取华南地区比较常用的TRAMS和ECMWF两种业务模式预报产品,将“龙舟水”期间暴雨过程划分为锋面和暖区暴雨两类,并分别进行检验评估,旨在了解极端“龙舟水”背景下两种模式对于锋面和暖区暴雨的预报偏差特征。和传统点对点方法相比,MODE方法能够有效避免模式中由于降水位置偏差导致的高空报率现象。进一步对MODE方法中暴雨对象的数量、位置、面积和强度评估结果进行分析,发现:高分辨率的TRAMS模式降水预报产品比ECMWF模式具有更好的暴雨对象识别和匹配能力;TRAMS模式对暖区暴雨的位置预报大多偏东,而ECMWF模式的锋面暴雨预报则基本偏北,上述两种降水位置偏差特征与不同模式对低空偏南气流的预报误差密切相关;TRAMS模式对锋面暴雨面积的预报与观测较为接近,对暖区暴雨面积的预报则偏大;ECMWF模式对锋面暴雨和暖区暴雨面积的预报均偏小;TRAMS模式对于暴雨强度和极值的预报比ECMWF模式更接近实况,但是对极端强降水仍然存在低估的现象。研究结果可为预报员了解不同业务模式对于“龙舟水”的预报误差特征提供新经验,对于进一步开展TRAMS模式的误差来源诊断和模式改进也有参考价值。
中文关键词: “龙舟水”,锋面暴雨,暖区暴雨,检验评估,模式预报
Abstract:From 21 May to 21 June 2022, the heaviest dragon-boat precipitation process in the last decade occurred in South China. This extreme precipitation process, featured with strong extremity, large accumulated rainfall and frequent occurrence of severe rainfall, caused significant economic losses. In this paper, the forecast products from two operational models, TRAMS and ECMWF, which are commonly used in South China, are selected to divide the torrential rain processes during dragon-boat precipitation into front-zone torrential rain and warm-sector torrential rain. The results are verified and evaluated, so as to understand the characteristics of the two models’ biases for the front-zone torrential rain and warm-sector torrential rain under the background of the extreme dragon-boat precipitation. Compared with the traditional point-to-point method, the MODE method can effectively avoid the phenomenon of high false alarm ratio caused by precipitation position deviation in the model. Further analysis of the number, position, precipitation area and intensity of torrential rain objects based on MODE method shows that the high-resolution model TRAMS has better ability to identify and match torrential rain objects than the global model ECMWF. The location of warm-sector torrential rain predicted by TRAMS is mostly biased to the east, while the front-zone torrential rain predicted by ECMWF is basically biased to the north. The deviations in precipitation position in the above two are closely related to the forecast errors of southerly airflow at low altitude by different models. The area prediction of the front-zone torrential rain by TRAMS is close to the observation, but the forecast area of warm-sector torrential rain is larger. The forecast areas by ECMWF for both front-zone torrential rain and warm-sector torrential rain are smaller. The prediction of torrential rain intensity and extreme value by TRAMS is closer to the observation than that by ECMWF, but it still underestimates the extreme precipitation. This study can provide new experience for forecasters to understand the prediction biases of different operational models for dragon-boat precipitation process. It also has some reference values for model developers to further carry out research on error source diagnosis and technical improvement of TRAMS model.
文章编号: 中图分类号:P456 文献标志码:
基金项目:国家自然科学基金项目(U2142213、42075014)、广东省气象局科研项目(GRMC2022M24、GRMC2023M48、GRMC2023M02)和中国气象局城市气象重点开放实验室开放基金(LUM-2023-07)共同资助
作者 | 单位 |
高翠翠 | 广东省韶关市气象局,韶关 512028 |
陈浩伟 | 广东省韶关市气象局,韶关 512028 |
徐道生 | 中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室,广州 510640 |
林晓霞 | 中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室,广州 510640 |
张邦林 | 国防科技大学气象海洋学院,长沙 410000 |
引用文本:
高翠翠,陈浩伟,徐道生,林晓霞,张邦林,2025.基于MODE方法的2022年极端“龙舟水”模式降水预报偏差特征[J].气象,51(5):566-580.
GAO Cuicui,CHEN Haowei,XU Daosheng,LIN Xiaoxia,ZHANG Banglin,2025.Model Forecast Biases for the Extreme Dragon-Boat Precipitation in 2022 Based on the MODE Method[J].Meteor Mon,51(5):566-580.
高翠翠,陈浩伟,徐道生,林晓霞,张邦林,2025.基于MODE方法的2022年极端“龙舟水”模式降水预报偏差特征[J].气象,51(5):566-580.
GAO Cuicui,CHEN Haowei,XU Daosheng,LIN Xiaoxia,ZHANG Banglin,2025.Model Forecast Biases for the Extreme Dragon-Boat Precipitation in 2022 Based on the MODE Method[J].Meteor Mon,51(5):566-580.
