###
气象:2025,51(4):389-399
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
临近气象预报大模型“风雷”V1版本检验及个例评估
盛杰,金荣花,张小雯,代刊,张小玲,关良,杨波,张育宸,邢蓝翔,龙明盛,王建民
(国家气象中心,北京 100081;清华大学,北京 100084)
Verification and Case Evaluation of the “Fenglei” V1 Meteorological Nowcasting Model
SHENG Jie,JIN Ronghua,ZHANG Xiaowen,DAI Kan,ZHANG Xiaoling,GUAN Liang,YANG Bo,ZHANG Yuchen,XING Lanxiang,LONG Mingsheng,WANG Jianmin
(National Meteorological Centre, Beijing 100081; Tsinghua University, Beijing 100084)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1次   下载 2
投稿时间:2025-01-08    修订日期:2025-03-31
中文摘要: 光流法等传统外推技术是目前强对流临近预报采用的主要客观方法,其无法体现对流系统的生消演变且预报时效有限;2024年中国气象局发布了我国首个基于人工智能的临近气象预报大模型“风雷”V1版本(以下简称“风雷”),基于雷达组合反射率开展3 h雷达回波外推预报。对2023年数据进行定量检验,结果表明“风雷”客观检验评分优于传统光流外推算法, 1 h预报时效以上回波预报优势更加明显,检验评分下降相对平缓,3 h预报时效内始终保持较小的Bias,致灾性显著的强回波TS评分较光流法提升了33%。选取2024年不同尺度的强对流过程开展个例评估,“风雷”在一定预报时效内能够正确给出对流系统生消演变的预报,表现出传统方法所不具备的对雷暴变化趋势的预报能力,有效延长了外推时效,为强对流临近预报提供了较好的人工智能客观指导产品。
Abstract:Traditional extrapolation techniques, such as the optical flow method, are the main objective methods currently used for nowcasting severe convective weather. These methods fail to represent the generation, dissipation, and evolution of convective systems, resulting in limited forecast validity periods. In 2024, the China Meteorological Administration released China’s first AI-based meteorological nowcasting model “Fenglei” V1 (hereafter referred to as “Fenglei”). “Fenglei” can generate 3 h extrapolation forecasts based on composite radar reflectivity. The results of quantitative verification on the 2023 data show that “Fenglei” outperforms the traditional optical flow extrapolation algorithms in objective verification scores, with more significant advantages for the forecasts exceeding a lead time of 1 h. Its verification scores decline relatively slowly and flatly, having relatively small Biases within the 3 h forecast lead time. Its TS score for severe and hazardous echo systems has been improved by 33% compared to the optical flow extrapolation algorithm. Case evaluations on the 2024 severe convective events of different scales reveal that “Fenglei” can accurately forecast the generation, dissipation, and evolution of convective systems within a certain forecast lead time. It shows the forecasting capability that traditional methods lack for thunderstorm trend evolution, effectively extending the extrapolation lead time. Thus, “Fenglei” can provide reliable AI-based objective forecast products for the nowcasting of severe convection.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金面上项目(42175001)、中国气象局气象能力提升联合研究专项(23NLTSZ002)和中国气象局青年创新团队(CMA2023QN06)共同资助
引用文本:
盛杰,金荣花,张小雯,代刊,张小玲,关良,杨波,张育宸,邢蓝翔,龙明盛,王建民,2025.临近气象预报大模型“风雷”V1版本检验及个例评估[J].气象,51(4):389-399.
SHENG Jie,JIN Ronghua,ZHANG Xiaowen,DAI Kan,ZHANG Xiaoling,GUAN Liang,YANG Bo,ZHANG Yuchen,XING Lanxiang,LONG Mingsheng,WANG Jianmin,2025.Verification and Case Evaluation of the “Fenglei” V1 Meteorological Nowcasting Model[J].Meteor Mon,51(4):389-399.