###
气象:2024,50(11):1359-1372
本文二维码信息
码上扫一扫!
基于贝叶斯方法的承德山区冰雹潜势预报研究
高艳春,胡志群,王宏,胡赛安,胡琪琭
(河北省承德市气象局,承德 067000; 中国气象科学研究院灾害天气国家重点实验室,北京 100081)
Study of Hail Potential Forecast in Chengde Mountains Based on Bayesian Method
GAO Yanchun,HU Zhiqun,WANG Hong,HU Saian,HU Qilu
(Chengde Meteorological Office of Hebei Province, Chengde 067000; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 67次   下载 271
投稿时间:2023-10-10    修订日期:2024-07-04
中文摘要: 利用承德山区冰雹实况资料、承德CB型多普勒天气雷达探测资料、NCEP FNL再分析资料及NCEP-GFS模式预报资料,统计2000—2020年4—9月承德山区184个冰雹天气个例的相关环境参数分布特征及预报阈值;基于箱线图结果给定起步最优阈值条件,将2014—2020年4—9月有冰雹观测记录或组合反射率≥60 dBz的样本记为冰雹实况,依据邻近地点、临近时间原则将实况匹配到再分析数据网格上,构建正、负样本数据集,进行特征参数选取、区间分割及概率计算,利用贝叶斯方法建立3、6、9、12和24 h冰雹潜势预报模型。针对2021—2022年6—8月的天气过程进行试报和检验,结果表明:贝叶斯方法在冰雹天气的实际预报业务中具有一定的可行性,潜势预报模型识别冰雹的命中率均在90%以上,平均临界成功指数为40.3%。该方法优于概率预报和配料法,可以给出有无冰雹的确定性预报,客观性更强,对山区强对流天气预报有一定的借鉴作用,但由于再分析资料的时空尺度远大于冰雹等强对流天气,故存在一定的空报。
Abstract:A total of 184 hail weather cases in Chengde Mountains from April to September in 2000-2020 are analyzed by means of multi-source data including the hail observation, CINRAD/CB weather radar data, NCEP FNL reanalysis data, and NCEP-GFS forecasts. Firstly, the distribution characteristics and forecast thresholds of relevant ambient parameters such as water vapor, thermal instability, dynamic lift and characteristic height are analyzed in the form of box plots. Then, the initial optimal threshold values are set according to the results of box plots. The hail labels are determined according to the hail observation records or composite reflectivity greater than or equal to 60 dBz from April to September in 2014-2020. The hail labels are matched to the grids of reanalysis data according to the principle of near location and proximity time to construct the positive and negative sample dataset for feature parameter selection, interval segmentation and probability calculation. Next, five models for 3, 6, 9, 12 and 24 h hail potential forecast are established by the Bayesian method. The models are tested focusing on the weather processess from June to August during 2021-2022. The results suggest that the Bayesian-based hail potential prediction models have a certain feasibility in daily weather forecasting. The hit rates of all the models are above 90%, and the average critical success index is over 40.3%. Differing from the traditional probability and ingredient methods, the method can provide a better objective forecast of hail occurrence, which has a certain reference value for forecasting severe convective weather in mountainous areas. However, there are some false alarms as the spatio-temporal scale of the reanalysis data is much larger than that of severe convective weather, which needs to be improved in the future.
文章编号:     中图分类号:P456,P457    文献标志码:
基金项目:国家重点研发计划(2022YFC3003900)、河北省气象局科研项目(22zc02)和承德市研究项目(202202F001、202305B074)共同资助
引用文本:
高艳春,胡志群,王宏,胡赛安,胡琪琭,2024.基于贝叶斯方法的承德山区冰雹潜势预报研究[J].气象,50(11):1359-1372.
GAO Yanchun,HU Zhiqun,WANG Hong,HU Saian,HU Qilu,2024.Study of Hail Potential Forecast in Chengde Mountains Based on Bayesian Method[J].Meteor Mon,50(11):1359-1372.