本文已被:浏览 59次 下载 528次
投稿时间:2023-10-14 修订日期:2024-05-29
投稿时间:2023-10-14 修订日期:2024-05-29
中文摘要: 云是天气气候中最重要、最活跃的因子之一,对大气系统的辐射能量平衡和水分循环起到重要调制作用。对总云量进行有技巧的预报也为更好把握天气现象、预测光伏发电等新能源出力提供客观依据。中国气象局北京快速更新循环数值预报系统(CMA-BJ)可提供我国逐小时高分辨率总云量预报产品,本文采用时间尺度分离的方法对其预报性能开展系统性评估,并对误差来源进行分析,从而为产品释用和模式改进提供参考。结果表明,CMA-BJ总体能够抓住总云量的空间分布以及日变化强度特征,在1~24 h时效预报和观测的总云量空间相关系数在各月均超过0.6,但在冬季(1月)对总云量和日变化强度存在较为明显的低估,全国平均云量负偏差达-0.133。随着预报时效的延长,模式对云量逐时变率的预报能力有所下降,预报第1至第4天的平均TCC分别为0.470、0.409、0.355、0.315,有技巧的预报可维持至48~72h。诊断分析表明,模式中相对湿度偏小可能是造成总云量预报负偏差的主要来源之一,垂直速度预报偏差也是影响云量预报误差的重要原因。
中文关键词: 总云量,CMA-BJ,性能评估
Abstract:Cloud is one of the most important and active factors in weather and climate, and plays an important role in modulating the radiation-energy balance and water cycle of atmospheric system. The effective forecast of total cloud cover can lay a basis for better grasp of weather phenomena and prediction of new energy output such as photovoltaic power generation. The model CMA-BJ (Beijing Rapid Update Cycle System) can provide hourly high-resolution total cloud cover prediction products. In this paper, the prediction performance of CMA-BJ is systematically examined and evaluated by the time scale separation method, and the error sources are analyzed, so as to provide a reference for product interpretation and model improvement. The results show that the spatial distribution characteristics and diurnal variation intensity of total cloud cover can be well predicted by CMA-BJ. The pattern correlation coefficients between the CMA-BJ forecasted and observed total cloud cover with 1-24 h lead time are all greater than 0.6 in each month. However, the total cloud cover and diurnal variation intensity are significantly underestimated in winter (January), with the deviation of CMA-BJ reaching -0.133. As the forecasting time increases, the prediction ability of CMA-BJ decreases, with the averaged TCC skills being 0.470, 0.409, 0.355 and 0.315 for the 1-4 d forecast, which means the skillful prediction can be maintained up to 48-72 hours. The diagnostic analysis shows that the low relative humidity in the model may largely contribute to the negative deviation in total cloud cover prediction. Besides, the bias of vertical velocity prediction is also an important reason for the cloud cover prediction error.
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划(2021YFC3000901)、国家自然科学基金项目(42175052)、中国气象局重点创新团队(CMA2022ZD09)、中国气象局青年创新团队(CMA2024QN06)和北京市自然科学基金项目(8212027)共同资助
引用文本:
张帅,吴捷,陈敏,仲跻芹,黄向宇,卢冰,杨扬,2024.CMA-BJ系统总云量预报性能检验评估[J].气象,50(9):1057-1070.
ZHANG Shuai,WU Jie,CHEN Min,ZHONG Jiqin,HUANG Xiangyu,LU Bing,YANG Yang,2024.Verification and Evaluation of Total Cloud Cover Prediction Performance of CMA-BJ[J].Meteor Mon,50(9):1057-1070.
张帅,吴捷,陈敏,仲跻芹,黄向宇,卢冰,杨扬,2024.CMA-BJ系统总云量预报性能检验评估[J].气象,50(9):1057-1070.
ZHANG Shuai,WU Jie,CHEN Min,ZHONG Jiqin,HUANG Xiangyu,LU Bing,YANG Yang,2024.Verification and Evaluation of Total Cloud Cover Prediction Performance of CMA-BJ[J].Meteor Mon,50(9):1057-1070.