本文已被:浏览 153次 下载 1338次
投稿时间:2022-04-22 修订日期:2023-01-06
投稿时间:2022-04-22 修订日期:2023-01-06
中文摘要: 针对天气、气候和生态环境监测对较高空间分辨率静止气象卫星陆表温度及全天候极轨卫星陆表温度的需求,分别发展静止气象卫星陆表温度空间降尺度和极轨气象卫星陆表温度云下重构算法,并对其进行改进处理。其中,静止气象卫星陆表温度空间降尺度模型充分利用静止气象卫星高时频和多光谱观测的优势,基于同一卫星同一遥感器所观测的陆表温度和相关通道亮度温度的日变化特征建立非线性统计回归模型,同时考虑下垫面类型的影响,方法应用于我国静止气象卫星风云四号A星(Fengyun 4A,FY 4A)先进的静止轨道辐射成像仪(advanced geosynchronous radiation imager,AGRI)陆表温度的降尺度,结果表明,所发展的降尺度模型不仅可以将FY 4A AGRI 的陆表温度由4 km降尺度到2 km,而且可以较好保持降尺度前陆表温度精度,降尺度前后陆表温度均方根误差最大为1.35 K。极轨气象卫星陆表温度云下重构则发展了DINEOF模型,并基于土地利用数据(Land Use,LU)进行结果的二次订正,实现极轨气象卫星陆表温度的全天候获取,方法应用于极轨气象卫星FY 3D中等分辨率光谱成像仪(medium resolution spectral imager,MERSI) 陆表温度,得到预期结果。
中文关键词: 气象卫星,陆表温度,空间降尺度,云下重构
Abstract:According to the requirements of weather, climate and ecological environment monitoring for land surface temperature (LST) at high spatial resolution and all-weather, this paper develops the spatial downscaling algorithm of LST from geostationary meteorological satellite observation and the reconstruction algorithm of LST under cloud from polar orbiting meteorological satellite observation respectively. The LST spatial downscaling model of geostationary meteorological satellite makes full use of the advantages of geostationary meteorological satellite observation in both high time-frequency and multi-spectrum. A nonlinear statistical regression model is established based on the daily variation characteristics of LST and brightness temperature of relevant channels of the same remote sensor of Fengyun-4A (FY-4A). And the underlying surface types are also taken into consideration. The method is applied to the LST downscaling of FY-4A AGRI (advanced geosynchronous radiation imager). The results show that the developed downscaling model can not only downscale the LST of FY-4A AGRI from 4 km to 2 km, but also maintain the accuracy of LST before downscaling, and the maximum RMSE of LST before and after downscaling is 1.35 K. For the LST reconstruction under cloud of polar orbiting meteorological satellite, the DINEOF model is developed, and the secondary correction of the results is carried out based on Land-Use data (LU), so as to realize the all-weather acquisition of polar orbiting meteorological satellite LST. The method is applied to polar orbiting meteorological satellite FY-3D medium mesolution spectral imager LST, and the results are as expected.
文章编号: 中图分类号:P413 文献标志码:
基金项目:国家重点研发计划(2018YFF0300101、2018YFB0504900)、国家自然科学基金项目(42001309)和风云四号地面应用系统工程建设项目共同资助
引用文本:
曹广真,周芳成,郑照军,黄庆妮,刘健,2023.静止和极轨卫星陆表温度产品的改进方法[J].气象,49(3):318-326.
CAO Guangzhen,ZHOU Fangcheng,ZHENG Zhaojun,HUANG Qingni,LIU Jian,2023.Improvement Method of Land Surface Temperature Remotely Sensed by Geostationary and Polar Orbiting Meteorological Satellites[J].Meteor Mon,49(3):318-326.
曹广真,周芳成,郑照军,黄庆妮,刘健,2023.静止和极轨卫星陆表温度产品的改进方法[J].气象,49(3):318-326.
CAO Guangzhen,ZHOU Fangcheng,ZHENG Zhaojun,HUANG Qingni,LIU Jian,2023.Improvement Method of Land Surface Temperature Remotely Sensed by Geostationary and Polar Orbiting Meteorological Satellites[J].Meteor Mon,49(3):318-326.