###
气象:2023,49(2):157-169
本文二维码信息
码上扫一扫!
基于微波链路的天气雷达降水场校准方法
张鹏,刘西川,周则明,宋堃,杨平吕
(陆军工程大学教研保障中心,南京 210014; 国防科技大学气象海洋学院,长沙 410005)
Calibration of Weather Radar Rainfall Field Based on Microwave Links
ZHANG Peng,LIU Xichuan,ZHOU Zeming,SONG Kun,YANG Pinglü
(Teaching and Research Support Center, Army Engineering University of PLA, Nanjing 210014; College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410005)
摘要
图/表
参考文献
相似文献
本文已被:浏览 250次   下载 1106
投稿时间:2021-12-21    修订日期:2022-08-14
中文摘要: 为减小天气雷达反演降水场与地面实际降水的偏差,提出了利用贴近地面的微波链路对天气雷达降水场实施校准的方法,包括变分校准法、卡尔曼滤波校准法、平均校准法和克里金校准法。为验证校准效果,在两次不同类型的实际降水过程中,利用两条微波链路,对 S波段天气雷达反演的降水场进行了校准,校准结果与地面雨量计实测值进行了比较,结果表明:四种校准方法均取得了一定的校准效果,改善了降水过程Ⅰ中强降水的低估问题和过程Ⅱ中弱降水的高估问题。校准后的雨强分布与雨量计测值的一致性得到提升,统计误差明显降低,改善程度由高至低依次为平均误差、均方根误差、平均绝对误差。综合各种校准方法在两次降水过程中的表现,克里金校准法的效果相对较好,变分校准法和平均校准法的效果优于卡尔曼滤波校准法。对平均误差和均方根误差改善幅度最大的是克里金校准法,对平均绝对误差改善幅度最大的为变分校准法。平均校准法和卡尔曼滤波校准法得到的校准因子为某一时次的区域平均校准因子,而克里金校准法和变分校准法能够得到随时间和空间位置变化的校准因子场。研究结果表明微波链路是校准雷达降水场的有效手段。
Abstract:To reduce the deviation between radar rainfall field and surface rainfall observations, this paper proposes calibrating the radar rainfall field with surface microwave links including the variational calibration method, the Kalman filter calibration method, the mean calibration method and the Kriging calibration method. The rainfall rates retrieved by two microwave links are used to calibrate the S band radar rainfall field in two precipitation cases of different types. The calibration results are then compared with the measurements of rain gauges. The conclusions are as follows. Firstly, all the four calibration methods are proved effective to reduce the bias between the radar based rainfall estimates and the gauge measured rainfall. The problems of the underestimation of heavy precipitation in precipitation Case Ⅰ and the overestimation of weak precipitation in Case Ⅱ are both partly solved. The statistical errors including mean absolute error (MAE), mean error (ME) and root mean square error (RMSE) are all significantly lowered after calibration. The improvement degrees of the statistical errors from high to low are ME, RMSE and MAE. Secondly, the effectiveness of the Kriging calibration method is the best among the four methods. The performances of the variational calibration method and the mean calibration method are better than that of Kalman filter calibration method. The Kriging calibration method is the most effective to reduce ME and RMSE and the variation method is most effective for MAE. Thirdly, the Kriging calibration method and the variational calibration method can derive calibration factor fields which vary with time and spatial position, while the mean calibration method and Kalman filter method can only obtain a mean calibration factor for each time. These results suggest that microwave link can be an effective alternative to calibrate the radar rainfall field.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目(41975030)和江苏省自然科学基金项目(BK20181337)共同资助
引用文本:
张鹏,刘西川,周则明,宋堃,杨平吕,2023.基于微波链路的天气雷达降水场校准方法[J].气象,49(2):157-169.
ZHANG Peng,LIU Xichuan,ZHOU Zeming,SONG Kun,YANG Pinglü,2023.Calibration of Weather Radar Rainfall Field Based on Microwave Links[J].Meteor Mon,49(2):157-169.