###
气象:2022,48(4):393-405
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于复卡尔曼滤波技术的华东区域风的多模式集成预报研究
吴柏莹,智协飞,陈超辉,张秀年
(南京信息工程大学气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室,南京 210044;天气在线气象应用研究所,江苏无锡 214000;国防科技大学气象海洋学院,长沙 410073;云南省气象台,昆明 650034)
Multi-Model Ensemble Forecasts of Wind over East China by Using Augmented Complex Extended Kalman Filter
WU Baiying,ZHI Xiefei,CHEN Chaohui,ZHANG Xiunian
(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044;Weather Online Institute of Meteorological Applications, Jiangsu, Wuxi 214000;Institute of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073;Yunnan Meteorological Observatory, Kunming 650034)
摘要
图/表
参考文献
相似文献
本文已被:浏览 530次   下载 1791
投稿时间:2021-01-21    修订日期:2022-01-19
中文摘要: 基于欧洲中期天气预报中心的业务预报系统(EC)、美国国家环境预报中心的全球预报系统(GFS)、我国的中尺度数值业务预报系统(CMA-MESO)和全球预报系统(CMA-GFS)这4个预报系统的华东及周边地区(20°~40°N、110°~130°E)2020年1—4月逐日地面和高空风的0~72 h预报资料,利用复卡尔曼滤波方法(augmented complex extended Kalman filter,ACEKF)对其进行多模式集成预报试验,并对结果进行检验和评估。结果表明,ACEKF方法的预报效果优于多模式消除偏差集合平均、多模式超级集合预报等方法和单一模式的预报,能够进一步降低风速预报的误差,提高风场预报的预报准确率。ACEKF在高空风速预报上的改进效果要优于地面风速预报,在地形复杂地区改进效果更优,在所有预报时效的均方根误差和距平相关系数上均有体现。
Abstract:Based on EC, GFS, CMA-MESO and CMA-GFS, the 0-72 h ensemble forecasts of daily surface and high-altitude zonal wind and meridional wind from January to April 2020 from the four models for East China and surrounding areas (20°-40°N,110°-130°E) are evaluated with the augmented complex extended Kalman filter (ACEKF) method. The results show that the ACEKF method outperforms the bias-removed ensemble mean, super-ensemble forecast and single-mode forecasts, and can further reduce the wind speed forecast errors. ACEKF can improve the upper-air wind speed forecasts better than those at ground level. In complex terrain areas the improved wind speed forecast is much better. These results are also reflected in the root-mean-square error and anomaly correlation coefficient for all forecast times.
文章编号:     中图分类号:    文献标志码:
基金项目:华东空管局研发项目(2019h463)、国家自然科学基金重大研究计划集成项目(91937301)和中国气象局气象预报业务关键技术发展专项[YBGJXM(2020)5A]共同资助
引用文本:
吴柏莹,智协飞,陈超辉,张秀年,2022.基于复卡尔曼滤波技术的华东区域风的多模式集成预报研究[J].气象,48(4):393-405.
WU Baiying,ZHI Xiefei,CHEN Chaohui,ZHANG Xiunian,2022.Multi-Model Ensemble Forecasts of Wind over East China by Using Augmented Complex Extended Kalman Filter[J].Meteor Mon,48(4):393-405.