本文已被:浏览 500次 下载 1533次
投稿时间:2021-01-15 修订日期:2021-10-22
投稿时间:2021-01-15 修订日期:2021-10-22
中文摘要: 利用2019年1月至2020年2月ECMWF细网格模式降水预报和388个自动气象站降水观测资料,以及国家气象信息中心三源网格降水量融合分析产品,在降水频率客观分析检验的基础上,采用卡尔曼动态频率匹配方法对ECMWF网格降水预报进行订正,所得结论如下:ECMWF模式小雨以上量级降水预报频率较观测明显偏多,暴雨偏少;模式预报与观测降水频率在不同季节上显著不同,将预报降水频率匹配到与观测一致,并不能得到最高的降水预报评分。基于卡尔曼滤波方法动态匹配预报和观测降水频率,能够将模式预报频率订正到与观测基本一致,预报降水的标准差和观测更加吻合,显著改善模式对小量级降水预报偏大、大量级降水预报偏小的现象。由于模式预报降水的位置或时间偏差,选用适当的系数,使得暴雨预报频率较观测频率略偏多,晴雨预报中降水频率较观测略偏少,可以获得更好的预报评分。按照不同区域的降水特性,分区计算卡尔曼动态频率进行降水订正,可以有效地提高暴雨的TS评分,但对晴雨预报准确率提高不显著。
中文关键词: 卡尔曼动态频率,网格降水预报,频率匹配,预报评分
Abstract:Based on ECMWF high resolution model grid precipitation forecast data from January 2019 to February 2020 and 388 meteorological stations precipitation observation data, the forecast performance of the model precipitation frequency is objectively verified, and the ECMWF grid precipitation forecast is corrected by using the Kalman dynamic frequency. The main conclusions are as follows. The ECMWF model has significantly higher forecast frequency for small-scale precipitation than the observation, but lower frequency for torrential rain. The frequency of model forecast and observed precipitation are significantly different in different seasons. Matching the frequency of forecast precipitation with that of observed precipitation does not get the highest precipitation forecast score. Based on the Kalman filtering method, the forecast and observed precipitation frequency can be dynamically matched, the model forecast frequency can be revised to be basically consistent with the observation, the standard deviation of the model forecast precipitation can be improved, and the phenomenon that the model forecast errors are more for light precipitation but less for severe precipitation can be significantly adjusted. Due to the position or time deviation of precipitation forecasted by the model, appropriate coefficients are selected so that the frequency of torrential rain forecast is slightly higher than the observed frequency, and the light rain frequency is slightly lower than the observed frequency, thus, a better precipitation forecast score can be obtained. According to the precipitation characteristics of different regions, the Kalman precipitation dynamic frequency is calculated separately to correct the precipitation, which can effectively improve the TS forecast score of torrential rain, but the accuracy of sunny and rain forecast is not significantly improved.
文章编号: 中图分类号: 文献标志码:
基金项目:陕西省自然科学基金项目(2021JM-595)、中国气象局数值预报(GRAPES)2021发展专项、国家重点研发计划(2018YFC1507901)、秦岭和黄土高原生态环境气象重点实验室重点项目(2020K-2)共同资助
引用文本:
潘留杰,薛春芳,张宏芳,高星星,梁绵,刘嘉慧敏,2022.基于卡尔曼动态频率的ECMWF降水预报订正[J].气象,48(1):73-83.
PAN Liujie,XUE Chunfang,ZHANG Hongfang,GAO Xingxing,LIANG Mian,LIU Jiahuimin,2022.ECMWF Precipitation Calibration Based on the Kalman Dynamic Frequency Matching Method[J].Meteor Mon,48(1):73-83.
潘留杰,薛春芳,张宏芳,高星星,梁绵,刘嘉慧敏,2022.基于卡尔曼动态频率的ECMWF降水预报订正[J].气象,48(1):73-83.
PAN Liujie,XUE Chunfang,ZHANG Hongfang,GAO Xingxing,LIANG Mian,LIU Jiahuimin,2022.ECMWF Precipitation Calibration Based on the Kalman Dynamic Frequency Matching Method[J].Meteor Mon,48(1):73-83.