###
气象:2019,45(7):1009-1018
本文二维码信息
码上扫一扫!
几种格点化温度滚动订正预报方案对比研究
曾晓青,薛峰,赵瑞霞,赵声蓉
(国家气象中心,北京 100081)
Comparison Study on Several Grid Temperature Rolling Correction Forecasting Schemes
ZENG Xiaoqing,XUE Feng,ZHAO Ruixia,ZHAO Shengrong
(National Meteorological Centre, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1124次   下载 2297
投稿时间:2018-02-18    修订日期:2019-05-31
中文摘要: 为了快速获得更为精准的格点温度预报产品,使用国家信息中心高分辨率、高频次的温度格点多元融合产品和欧洲中期天气预报中心全球模式2 m温度预报场资料,采用8种误差订正方案进行滚动订正预报试验。选择2017年1月1日至2月28日和6月1日至7月31日两个时间段进行两次回报模拟试验,并对订正前后的预报结果进行格点和站点检验分析,结果表明:8种方案对模式直接输出的预报场有正技巧订作用,全格点滑动误差回归模型订正和全格点滑动双因子回归模型订正效果最优,两种方案都能使订正场的格点平均绝对误差在2℃以下,3、6和9 h的格点准确率均在0.9以上。全格点滑动误差回归模型的检验评分略微好于全格点滑动双因子回归模型,表明作为预报模型因子的起报时刻误差场比数值模式因子在短期订正中扮演着更为重要的角色。
Abstract:To obtain more accurate and faster grid temperature forecast products, the study used a high-frequency gridded observation fusion product and eight kinds of error correction methods to carry out a rolling correction forecast test for the 2 m temperature forecast filed of the European Centre for Medium-Range Weather Forecasts. The test was conducted on two forecast simulations from 1 January to 28 February 2017 and from 1 June to 30 July 2017, starting at 14:00 BT and 20:00 BT in Beijing, and was performed in 3-24 hours rolling prediction correction. The forecast results were tested and analyed using grid observation fusion data and site observation data. The results show that the eight methods have positive correction effects on the direct model output. The full-grid sliding error regression model correction and the full-grid sliding two-factor regression model have the best correction effect. Both schemes can make the average absolute error of the grid of the correction field below 2℃, and the grid accuracy of 3 h, 6 h and 9 h is above 0.9. The prediction results of the full-grid sliding error regression model are slightly better than the prediction results of the full-grid sliding two-factor regression model. This shows that the error field at the beginning of the forecasting time plays an important role in the correction as a predictor of the regression model.
文章编号:     中图分类号:P413    文献标志码:
基金项目:国家重点研发计划(2018YFC1506606和2017YFC1502005)及中亚区域大气科学研究基金项目(CAAS201903)共同资助
引用文本:
曾晓青,薛峰,赵瑞霞,赵声蓉,2019.几种格点化温度滚动订正预报方案对比研究[J].气象,45(7):1009-1018.
ZENG Xiaoqing,XUE Feng,ZHAO Ruixia,ZHAO Shengrong,2019.Comparison Study on Several Grid Temperature Rolling Correction Forecasting Schemes[J].Meteor Mon,45(7):1009-1018.