###
气象:2015,41(8):964-969
本文二维码信息
码上扫一扫!
基于Bayes判别法的霜生自动化观测模型探讨
(1.安徽省气象信息中心,合肥 230031;2.中国科学技术大学数学学院,合肥 230022)
Automated Observation Model for Frost Based onBayes Discriminant Method
(1.Anhui Meteorological Information Centre, Hefei 230031;2.School of Mathematics, University of Science and Technology of China, Hefei 230022)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1241次   下载 1874
投稿时间:2014-06-09    修订日期:2015-02-27
中文摘要: 利用安徽砀山气象站的2001—2013年冬半年(10月至次年4月)的观测资料,探讨霜生与气温、地温、水汽压和风速等气象要素的相关性,并基于Bayes判别方法,采用逐步判别分析,建立多套霜生自动判别模型。结果表明:(1)霜是否出现与日最低及夜间不同观测时次的气温、地表温度显著相关,当夜间气温或地表温度越低,低于霜点的可能性越大,结霜的可能性也越大。(2)通过回算性检验和独立样本的预报性检验,基于Bayes判别法的霜生模型,对霜未发生的平均判别准确率达到86.5%,对霜发生的平均判别准确率达到92.7%,其中用日最低地温、当日07时水汽压和当日07时风速所建立的三要素模型最优,对霜发生的判别准确率可达到90%以上。因此,可以将Bayes霜生判别模型与图像识别技术相结合应用于霜的自动化观测。
Abstract:The correlations between frost and temperature, surface temperature, vapor pressure, wind speed and other meteorological factors are discussed in this paper by using the observation data from Anhui Dangshan Weather Station in the winter half year (from October to April of the next year) from 2001 to 2013. Using stepwise discriminant analysis method, multiple sets of frost automatic discriminant models for the occurrence of frost are built based on Bayes discriminant method. The results show that: (1) The occurrence of frost is significantly correlated with daily minimum temperature, night temperature of different observation time and surface temperature. The lower the night temperature or the surface temperature is, the larger the possibility of the temperature is lower than the frost point and the greater the possibility of the frost occurrence. (2) Through the back calculation test and prediction test of independent samples, the average accuracy rate of un occurred frost discriminated by the frost model is 86.5% based on Bayes discriminant method and the average accuracy rate of the seen frost is 92.7%. The three factor models based on the daily minimum temperature, the daily vapor pressure at 07:00 BT and the daily wind speed at 07:00 BT are optimal. The accuracy rate of discriminating the frost occurrence by the three factor models is more than 90%. Therefore, we can combine the Bayes frost discriminant model with image recognition technology, and apply the new technology to frost automatic observation.
文章编号:     中图分类号:    文献标志码:
基金项目:安徽省气象科技发展基金(KM201405)资助
引用文本:
华连生,温华洋,朱华亮,张正铨,2015.基于Bayes判别法的霜生自动化观测模型探讨[J].气象,41(8):964-969.
HUA Liansheng,WEN Huayang,ZHU Hualiang,ZHANG Zhengquan,2015.Automated Observation Model for Frost Based onBayes Discriminant Method[J].Meteor Mon,41(8):964-969.