###
气象:2014,40(1):66-75
本文二维码信息
码上扫一扫!
基于大尺度模式产品的误差订正与统计降尺度气象要素预报技术
(1.国家气象中心, 北京 100081;2.南京信息工程大学, 南京 210044;3.美国国家环境预报中心, 马里兰 20740;4.安徽省气象台, 合肥 230031)
Bias Correction and Statistical Downscaling Meteorological Parameters Forecast Technique Based on Large Scale Numerical Model Products Bias Correction and Statistical Downscaling Meteorological Parameters Forecast Technique Based on Large Scale Numerical Model Products
(1.National Meteorological Centre, Beijing 100081;2.Nanjing University of Information Science and Technology, Nanjing 210044;3.National Centers for Environment Prediction, MD 20740, USA;4.Anhui Meteorological Observatory, Hefei 230031)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1225次   下载 3016
投稿时间:2013-03-10    修订日期:2013-07-11
中文摘要: 应用自适应卡尔曼滤波方法,对大尺度模式要素预报进行误差订正和降尺度精细化气象要素预报。并通过对订正系数科学选取的研究,改进了滤波方法的应用效果。通过对大尺度模式系统进行误差订正,改善了大尺度模式预报的准确率,提高了模式要素,如2 m温度、10 m风等预报的精度,并基于改善了的大尺度模式预报场和高分辨率观测场,生成降尺度函数,得到高精度的气象要素预报产品,为精细化气象要素预报服务提供了有效的方法。
Abstract:Using self adaption Kalman filter method, bias correction of surface parameter products of large scale numerical prediction system are done. Through studying the appreciated method of obtaining bias correction coefficient, the filter method is improved and the forecasts of large scale model parameters such as 2 m temperature and 10 m wind are improved accordingly. Based on corrected large scale model forecast field and high resolution observatory field, downscaling vector function is obtained, and refined statistical downscaling meteorological parameter forecasts are created and it is an effective way to do high resolution meteorological parameter forecasts.
文章编号:     中图分类号:    文献标志码:
基金项目:公益性行业(气象)科研专项(GYHY201006017)资助
引用文本:
佟 华,郭品文,朱跃建,王东勇,刘志丽,陈国华,李 莉,盛 黎,2014.基于大尺度模式产品的误差订正与统计降尺度气象要素预报技术[J].气象,40(1):66-75.
TONG Hua,GUO Pinwen,ZHU Yuejian,WANG Dongyong,LIU Zhili,CHEN Guohua,LI Li,SHENG Li,2014.Bias Correction and Statistical Downscaling Meteorological Parameters Forecast Technique Based on Large Scale Numerical Model Products Bias Correction and Statistical Downscaling Meteorological Parameters Forecast Technique Based on Large Scale Numerical Model Products[J].Meteor Mon,40(1):66-75.