本文已被:浏览 1362次 下载 2420次
投稿时间:2011-03-26 修订日期:2011-05-22
投稿时间:2011-03-26 修订日期:2011-05-22
中文摘要: 使用带有详细微物理过程的ARPS模式,对台风韦帕(Wipha)进行三重嵌套细网格模拟,利用模式结果,对台风眼壁强降水中心的云结构和降水形成机制进行分析,结果表明:冰相微物理过程是启动和形成台风眼壁暴雨的主要降水形成机制。在9000~14000 m高空,云水在很低的温度下经均质核化产生冰晶,或经非均质核化形成云冰;冰晶通过凝华增长(psfi,贝吉龙过程)、 雨水收集云冰产生雪(praci)和冰晶粘附雨水成雪(piacr)过程生长为雪;霰产生主要包括4个过程:冰晶接触雨水使其成霰(piacr)、雪撞冻云水使其成霰(psacr)、雨水收集云冰转化成霰 (praci) 或雨水冻结为霰 (pgfr);霰粒子通过收集云冰干增长 (dgaci),霰撞冻云滴增长(dgacw)等过程生长;霰融化(pgmlt)和雪融化(psmlt)成雨水后再通过碰并云水等暖云生长过程,最后形成雨水。 霰过程的强弱在雨水形成机制中很重要。(29.5°N、121.8°E)和(28.3°N、120.4°E)强降水中心冰晶转化率没有太大差别,但是(29.5°N、121.8°E)强降水中心上空冰晶通过贝吉龙过程快速成长为雪和霰,霰粒子增长过程远远强于(28.3°N、120.4°E)强降水中心,低空又有较高的云水转化率,使降水粒子在暖云中继续快速生长,冷暖云过程的有利配置使(29.5°N、121.8°E)出现较强雨水转化率。
中文关键词: 台风眼壁, 云结构, 降水机制
Abstract:The non static mesoscale model ARPS (Advanced Regional Prediction System) with detailed microphysical processes is used to simulate typhoon Wipha (2007), and the data of numerical simulation are used to analyze the microphysical structures and the precipitation forming mechanisms of the storm near typhoon eyewall. It is found that the ice phase microphysical processes are the main mechanism that initiates and produces the storm rain. Ice crystals can be produced by cloud water homogeneous nucleation, or cloud ices are produced by cloud water non homogeneous nucleation at heights 9000-14000 m. The ice grows into snow in 3 main microphysical processes (psfi, praci and piacr, which are defined in body text). The graupel is produced in 4 main microphysical processes (piacr, psacr, praci and pgfr). The graupel grows mainly in 2 main microphysical processes (dgaci and dgacw). The melting graupel and snow produce rain through accretion with cloud water in warm cloud. The production and growth microphysical processes of graupel play important roles in the precipitation forming mechanisms. There is not obvious difference of ice conversion ratios between two precipitation centers at (29.5°N,121.8°E) and (28.3°N,120.4°E). But the ice grows more quickly into snow and graupel in terms of Bergeron process at (29.5°N,121.8°E) than at (28.3°N,120.4°E). Then the precipitation particle can grow more quickly at (29.5°N, 121.8°E) than at (28.3°N,120.4°E) due to higher cloud water conversion ratios at low altitudes. There fore the rain conversion ratios are higher at (29.5°N,121.8°E) due to better configuration of clod and warm cloud processes.
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点基础研究发展计划(2009CB421505)和河北省气象局科研项目(11ky23)共同资助
引用文本:
杨文霞,赵利品,邓育鹏,胡向峰,2011.台风眼壁的云结构与降水形成机制分析[J].气象,37(12):1481-1488.
Yang Wenxia,Zhao Lipin,Deng Yupeng,Hu Xiangfeng,2011.Study on the Cloud Structure and Precipitation Forming Mechanisms of the Storm near Typhoon Eyewall[J].Meteor Mon,37(12):1481-1488.
杨文霞,赵利品,邓育鹏,胡向峰,2011.台风眼壁的云结构与降水形成机制分析[J].气象,37(12):1481-1488.
Yang Wenxia,Zhao Lipin,Deng Yupeng,Hu Xiangfeng,2011.Study on the Cloud Structure and Precipitation Forming Mechanisms of the Storm near Typhoon Eyewall[J].Meteor Mon,37(12):1481-1488.