本文已被:浏览 1224次 下载 2333次
投稿时间:2010-08-25 修订日期:2011-01-21
投稿时间:2010-08-25 修订日期:2011-01-21
中文摘要: 热量资源是重要的农业气候资源,掌握其精细化分布情况,对于农业气候区划有重要意义,并对农业发展起科学的指导作用,为了得到全国各时间尺度的热量资源精细化资料,需要将不同时间尺度的气象站观测资料估算到无资料的细网格上。本文对比分析了反距离加权法(IDW)、梯度距离平方反比法(GIDW)、样条函数法(Spline)、克里格法(Kriging)和趋势面法估算全国热量资源的效果,采用1998—2007年全国651个基本、基准站的1月和7月平均气温、最高气温进行空间估算试验,用交叉检验的方法分析估算误差及其分布情况。分析结果表明,梯度距离反比法(GIDW)较好地反映了局地地形、海拔高度的影响,误差最小,估算结果最优,GIDW法对热量资源的估算误差较小,相对误差总体不超过5%。基于GIS软件平台,利用1971—2000年全国2346个站的资料采用GIDW法对全国的热量资源进行了估算,得到了年、季、月、旬尺度的平均气温分布图,并制作了稳定通过0,5,10,12,15℃界限温度的初终日序日、初终间日数、积温全国分布图,空间分辨率达0.01°。
Abstract:Heat resource is one of the most important agricultural climate resources. It will be very helpful for agricultural climate zoning and guiding agriculture development to use scientific methods to make refinement calculation in how the heat resource will change with different topography elements such as position, direction or altitude. In this paper, the data from 651 basic meteorological observation stations were used to calculate the distribution of the national heat resource, which contains the average temperature data and the highest temperature data of January and July between 1998 and 2007. The IDW (inverse distance weighted), GIDW (gradient inverse distance weighted), spline function, kriging and trend surface analysis methods were used in calculating the heat resources, and the different results were compared. It has shown that the minimum error of GIDW is below 5% while using GIDW methods in calculating the heat resource distribution that can reflect the influence from terrain and altitude. Cross validation was used to analyze the error and distribution. Based on GIS software platform, the GIDW was used to draw a lot of distribution maps by use of the 1971—2000 heat resource data from 2346 stations all around China. Average temperature distribution maps in ten days, month, season, year scale and the distribution of the beginning date, the ending date, the days between beginning and ending and accumulated temperature of stably passing through 0, 5, 10, 12 and 15 ℃ at spatial resolution of 0.01°.
文章编号: 中图分类号: 文献标志码:
基金项目:公益性行业(气象)科研专项(GYHY200706007)资助
作者 | 单位 |
王怀清 | 江西省气候中心,南昌 330046 江西省彭泽县气象局,彭泽 332700 |
殷剑敏 | 江西省气候中心,南昌 330046 |
辜晓青 | 江西省气象科学研究所,南昌 330046 |
蔡哲 | 江西省气象科学研究所,南昌 330046 |
引用文本:
王怀清,殷剑敏,辜晓青,蔡哲,2011.中国热量资源精细化估算[J].气象,37(10):1283-1291.
Wang Huaiqing,Yin Jianmin,Gu Xiaoqing,Cai Zhe,2011.Study on Elaborate Extrapolation of the Chinese Heat Resources over Actual Terrains[J].Meteor Mon,37(10):1283-1291.
王怀清,殷剑敏,辜晓青,蔡哲,2011.中国热量资源精细化估算[J].气象,37(10):1283-1291.
Wang Huaiqing,Yin Jianmin,Gu Xiaoqing,Cai Zhe,2011.Study on Elaborate Extrapolation of the Chinese Heat Resources over Actual Terrains[J].Meteor Mon,37(10):1283-1291.