本文已被:浏览 916次 下载 1977次
投稿时间:2007-11-27 修订日期:2008-02-03
投稿时间:2007-11-27 修订日期:2008-02-03
中文摘要: 将基于主成分分析(PCA)的BP神经网络预报方法引入大气污染预报,建立SO2浓度预报模
型。结果表明:应用主成分分析对数据进行前处理,以原始预报因子的主成分作为BP神经网络
的输入,降低了数据维数,消除了样本间存在的相关性,大大加快了BP神经网络的收敛速度
。对模型进行预报验证,预报值与实际值之间的绝对误差为0.0098,预报值与实际值的相关
系数达到0.885,得到较好的预报效果。并且比一般的BP神经网络模型具有较高的拟合和预
报精度。
Abstract:Based on principal components analysis (PCA),the BP (Back Propagation) neural ne
twork forecast method is introduced in air pollution prediction and the SO2 co
ncentration prediction model is established. The results indicate that by applyi
ng the principal component analysis in the data pre processing and taking the principal
components of primitive predictor as the input of neural network, it can reduce
the dimension of data, eliminate the correlation between the samples, and largel
y speed up the convergence rate. The verification of forecast model shows that t
he absolute error between the forecasts and the real value is 0.0098, and the co
rrelation coefficient between them reaches 0.885. The PCA BP model has a fit ac
curacy better than the common BP model.
keywords: principal components analysis BP neural network air pollution SO2 concentra
tion forecasting
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
于文革,王体健,杨诚,孙莹,2008.PCA-BP神经网络在SO2浓度预报中的应用[J].气象,34(6):97-101.
Yu Wenge,Wang Tijian,Yang Cheng,Sun Ying,2008.Application of PCA-BP Neural Network to SO2 Concentration Forecast[J].Meteor Mon,34(6):97-101.
于文革,王体健,杨诚,孙莹,2008.PCA-BP神经网络在SO2浓度预报中的应用[J].气象,34(6):97-101.
Yu Wenge,Wang Tijian,Yang Cheng,Sun Ying,2008.Application of PCA-BP Neural Network to SO2 Concentration Forecast[J].Meteor Mon,34(6):97-101.