本文已被:浏览 682次 下载 1738次
投稿时间:2006-08-08 修订日期:2006-10-15
投稿时间:2006-08-08 修订日期:2006-10-15
中文摘要: 支持向量机是基于统计学习理论的新一代机器学习技术,其非线性回归预测性能优越于传统统计方法。利用前一天该污染物的日均浓度、前一天地面平均风速等7个预报因子建立了基于RBF核函数支持向量回归法的大气污染预报模型,并利用十重交叉验证和网格搜索法寻找模型最优参数。乌鲁木齐大气预报实例表明:支持向量机显示出小样本时预报精度较高和训练速度快的独特优势,为空气质量预报提供一种全新的模式。
中文关键词: 大气污染预报,支持向量机(SVM),交叉验证,网格搜索
Abstract:The support vector machine (SVM),a new generation machinery learning tech-nology based on statistical theory,has been reported to have better prediction performance of non-liner regression than traditional statistical methods.An SVM regression (SVMR) model for atmospheric pollution prediction is developed according to seven forecast factors, including the daily average pollutant concentration of previous day,daily average wind speed of previous day,etc.Meanwhile,10-fold cross-validation and grid-search methods are ap-plied to find the best parameters of SVMR.The experimental results of Urumqi data show that SVM has the unique advantage of high prediction accuracy and training rate on small-size data sets.It suggests a new model for prediction of atmospheric pollution.
keywords: atmospheric pollution prediction,support vector machine (SVM),cross-validation,grid-search
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 |
常涛 | 新疆气候中心,乌鲁木齐 830002 |
Author Name | Affiliation |
引用文本:
常涛,2006.支持向量机在大气污染预报中的应用研究[J].气象,32(12):61-65.
,2006.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].Meteor Mon,32(12):61-65.
常涛,2006.支持向量机在大气污染预报中的应用研究[J].气象,32(12):61-65.
,2006.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].Meteor Mon,32(12):61-65.