本文已被:浏览 638次 下载 1217次
中文摘要: 提出随着时间的推移,用新信息取代旧信息的“限定记忆"的时间序列数据处理方法。且仅对均生函数外延矩阵的前L阶方阵作主分量分析,用数目较少又包含主要信息量的主分量因子对时间序列建模。该方案用于四川省28个县市的年平均气温的多步预测值与实况值的相对误差均在±4%以内,表明该方案用于气温多步预测是有效的。
中文关键词: 信息量,均生函数,主分量,气温预测
Abstract:A method of data analysis of temproal sequences,based on the replacement of new-old information of restrictive memory with lapse of time is developed. This appraoch is based on the modelling of the principal component analysis for the prior L square matrix of period extrapolation matrix Of mean generating function only,with a few principal components inclouding main information of temporal sequence.The scheme is applied to the multi-step forecast of annual meantemperatures of 28 cities in Sichuan,and the relative errors between forecast and real values are not more than 14%,and it is shown that the scheme is effective for the multi-step forecast of temperature.
keywords: information quantity,mean generating function,principal component analysis,temperature forecast
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金
Author Name | Affiliation |
引用文本:
李祚泳,张辉军,1994.信息替换的均生函数主分量多步预测[J].气象,20(5):16-19.
,1994.Multi-Steps Forecast Model with Principal Component of Mean Generating Function by Replacement of Information[J].Meteor Mon,20(5):16-19.
李祚泳,张辉军,1994.信息替换的均生函数主分量多步预测[J].气象,20(5):16-19.
,1994.Multi-Steps Forecast Model with Principal Component of Mean Generating Function by Replacement of Information[J].Meteor Mon,20(5):16-19.