Abstract:
Based on the strong wind (≥10.8 m·s-1) data observed by Jinan boundary layer wind profile radar (WPR) and L-band sounding radar (LW) located in the same place, statistical correlation, fitting, and profile analysis were used to systematically compare the similarities and differences between spatial and temporal changes of both of them. The results show that the correlation coefficients of the u-component, v-component, wind direction, and wind speed are 0.973, 0.965, 0.994, and 0.665 respectively. The standard deviations are 2.04 m·s-1, 2.88 m·s-1, 10.82° and 2.53 m·s-1 respectively. The correlations of the two observed strong wind data are relatively high, with wind direction samples better than speed samples and precipitation period samples better than that of non-precipitation period samples. This indicates that the strong wind data observed by WPR are credible and the WPR horizontal wind data during precipitation period can be used. The strong wind direction and speed of the two observations are basically the same, but the differences at lower levels are bigger, especially at the heights of 340 m and below. Below the heights of 2980 m, 1900 m, and 2740 m the wind direction samples of WPR during precipitation periods, non-precipitation periods, and the whole periods have slightly lower values than that of LW. However, the wind speeds of WPR below 1300 m, 2740 m, and 1660 m are slightly bigger than that of LW. The overall complementarity of the two data is good, and the differences in wind direction, wind speed, and v-component of the two types are in accordance with the e-index law or the law of logarithm increase or decrease, but the u-component needs to be fitted by segments. When the regression equation is calculated, variations in height should be taken into account.