ISSN 1000-0526
CN 11-2282/P
Preliminary Analysis on the Influence Difference of the Inland/Offshore Wind Farm Group on Local Turbulence Intensity and Wind Shear Exponent
Author:
Affiliation:

Beijing Climate Center, Beijing 100089;CMA Earth System Modeling and Prediction Centre, Beijing 100081; State Key Laboratory of Severe Weather, Beijing 100081;Longyuan (Beijing) Wind Power Engineering Design Consulting Co., Ltd., Beijing 100034

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Wind farms have obvious impact on the local climate. However, whether there exist obvious differences in environmental effects of local wind between the inland and offshore wind farms still need to be explored. Based on the inland wind farm data from Shangyi, Hebei Province and offshore wind farms in Rudong, Jiangsu Province and the data of meteorological observation and wind gradient tower around wind farm the influence difference of the inland and offshore wind farms on local wind environment, turbulence intensity (TI) and wind shear exponent (WSE) are preliminarily analyzed. The results show that the inland and offshore wind farms have significant effects on TI and WSE. The constructed inland and offshore wind farms have an enhancement effect on TI, and the average annual TI increased by 31% and 37%, respectively. The largest increment occurred in spring (47%) and winter (49%) in inland and offshore wind farms respectively. Moreover, the TI increasing range of high-level was greater than that in low-level, and greater at night than in day in inland wind, while the TI increasing range was relatively stable at different heights and diurnal variation in offshore wind farms. In terms of WSE, the constructed inland and offshore wind farms have significant differences in their influences on WSE. The WSE increased during the day and decreased at night, and the diurnal variation was significantly reduced with the average annual WSE decreased by 8%, and the largest decline in WSE in autumn (12%) in the inland wind farms. By contrast, the WSE increased obviously during both day and night with average annual WSE increased by 24%, and the largest rise seen in spring (37%) in offshore wind farms.

    Reference
    Related
    Cited by
Get Citation
分享
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 02,2022
  • Revised:June 19,2023
  • Adopted:
  • Online: December 28,2023
  • Published:

WeChat

Mobile website