ISSN 1000-0526
CN 11-2282/P
Advances in Tornado Research in China
Author:
Affiliation:

National Meteorological Centre, Beijing 100081; Chinese Academy of Meteorological Sciences, Beijing 100081

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Several intense tornadoes (≥EF3) in China in recent years resulted in heavy casualties and serious economic losses. Tornado has a very small scale, and its occurrence frequency in China is extremely low. At present, China still does not have the operational capability of forecasting tornadoes. However, with the development of observation networks of new-generation weather radar and surface automatic weather stations, damage survey and numerical weather prediction model, remarkable progress in tornado research in China has been made. The spatio-temporal and climatological characteristics, favorable synoptic backgrounds and environmental conditions for tornado in China have been understood more comprehensively, and it has also been found that the favorable environmental conditions for tornado in different synoptic backgrounds are somewhat different. The damage survey process and analysis technology of tornado disaster have been developed. The damage surveys and analyses of several intense tornadoes, such as the 2016 Funing, Jiangsu Province EF4 tornado, have been made in detail, which provide indispensable data for disaster prevention and mitigation. More understandings of meso- and micro-scale characteristics of tor-nadic convective storms have been got, including the findings of the storm cold pool with appropriate intensity, the bottom of the mesocyclone generally lower than the height of 1 km, the positive intensity correlation between tornado and its parent mesocyclone, slantwise mesocyclone, tornadic debris signature, descending reflectivity core, and multi-vortex structure of some tornadoes. Two tornadoes have successfully been ideally simulated using a fine-resolution cloud model, and the tornado-scale vortices in the convective eye wall of 2005 Typhoon Matsa and the multiple vortices of the 2016 Funing Tornado have been successfully simulated by the WRF (Weather Research and Forecasting) model. In future, we still need to further develop tornado detection technology, and to study fine surface meteorological element distribution and structure features, tornado vortex and lightning activity of tornadic convective storms. What’s more, researches on the development mechanisms of tornado are more needed through finer-resolution observation data and higher-resolution numerical weather simulation so as to provide more scientific foundations for promoting the tornado forecasting and warning capability in China.

    Reference
    Related
    Cited by
Get Citation
分享
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 06,2020
  • Revised:April 15,2021
  • Adopted:
  • Online: December 08,2021
  • Published:

WeChat

Mobile website