Abstract:In this paper, the GPS-PWV (GPS/PWV) of GPS inversion of 11 stations in the central and eastern Qilian Mountains from 2016 to 2018 is used to analyze the characteristics of the spatio-temporal distribution, zonality and vertical charge of precipitable water vapor. The results show that compared to the PWV calculated from sounding data from Zhangye and Minqin stations, the average root-mean-square error and deviation are 2.1 mm and 1.07 mm respectively. GPS/PWV is slightly larger than RS/PWV, and the correlation coefficient of the two results reaches 〖JP2〗0.97. The PWV in the central and eastern Qilian Mountains has characteristics of obvious daily, monthly and seasonal variations. The daily maximum of PWV appears between 11:00-16:00 BT and the minimum between 01:00-05:00 BT. The monthly maximum occurs in August, and the monthly minimum is in January-February. The PWV seasonal variation shows a decreasing order from summer to autumn, spring and winter. The areas with high PWV values are mainly located in the southern part of Qilian Mountains, with obvious low-value areas at Gangcha and Minhe stations in the middle section of Qilian Mountains. PWV has obvious characteristics of zonatity and vertical change. The correlation coefficient between PWV and altitude reaches -0.77. PWV increases gradually from west to east with longitude, showing a change of high-low-high trend from south to north. In addition, the spatial distribution and seasonal change of PWV are also related to the effect of monsoon.