ISSN 1000-0526
CN 11-2282/P
Analysis of Dual-Polarization Radar Observation During the 5 December 2015 Snowfall Process in Hangzhou
Author:
Affiliation:

Chengdu University of Information Technology, Chengdu 610225; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081; Hangzhou Meteorological Bureau, Hangzhou 310000

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Depending on the New Generation Doppler Weather Radar, many studies on winter weather processes have been carried out in China. However, as the radar network in China is gradually upgraded to the dual-polarization radar, how to apply the polarization parameters to winter forecasting operation has become an important issue to be solved at present. Using the identification method of hydrometeor and statistical method of snowfall accumulation time based on bright band identification and the observation data of a snowfall process detected by the C-band dual-polarization radar in Linan on 5 December 2015, this study analyzes the spatio-temporal evolution characteristics of radar parameters, bright band and the distribution of snowfall accumulation time associated, and compares the analysis results with the ground and radiosonde data, preliminarily exploring the advantages of the dual-polarization radar in winter snow forecast. The results indicate that: (1) The echo strength of winter rainfall is weaker than that of continuous precipitation in summer. The differential reflectivity factor and the correlation coefficient between rain and snow is not significant, making it difficult to identify the winter hydrometeor with the fuzzy logic method. (2) The bright band in this process is an irregular ring or linear shape that deviates from the radar station. It is not horizontal at some spots, and sometimes there is a vertical bright band. (3) The distribution of snowfall accumulation time, obtained by the proposed method of hydrometeor identification and the method of snowfall accumulation time statistics, is basically consistent with the observed snow depth distribution. These methods provide a possibility for estimating snow depth in some regions. (4) The evolution of bright band is corresponding with the spatio-temporal changes of the ground and radiosonde temperature. Compared with the single-polarization radar, it’s more reliable to identify bright band using the dualpolarization radar.

    Reference
    Related
    Cited by
Get Citation
分享
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 04,2018
  • Revised:January 17,2019
  • Adopted:
  • Online: September 24,2019
  • Published:

WeChat

Mobile website