Numerical Simulation on the Characteristics of PM2.5 Heavy Pollution and the Influence of Weather System in Hubei Province in Winter 2015
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
Using the WRF/Chem zero-emission scenario simulation scheme, the simulated PM2.5 concentration in Hubei Province from 2 December 2015 to 31 January 2016 was separated into regional transmission component and local accumulation component. Based on the statistical analysis of numerical simulation results, the transmission channel of pollutants and the transmission contribution rate in Hubei Province as well as the influence of weather systems in key areas on different pollution components were studied. It was found that the heavy pollution process is dominated by the northerly and the easterly winds, showing the obviously regional transport characteristics. There are two main channels for pollutant transmission. The first is from Nanyang Basin in Henan Province to Xiangyang and into Jianghan Plain in Hubei Province, and the second is from Xinyang in Henan Province to Suizhou, Xiaogan and Wuhan, and then into the east of Jianghan Plain. The potential pollution source of the long-distance regional transmission lies in Henan, Anhui, Jiangsu, Shandong Provinces etc. In the process of heavy pollution, the contribution rate of external sources is as high as 66% on average for all cities, and the contribution rate is over 75% for the cleaner cities. The regional transport component shows, that in southeast China, which is the main sensitive region, the correlation of pressure (temperature) change and PM2.5 conveying is significantly negative (positive), having a good effect in maintaining the two vector belts of south and north associated with wind field (PM2.5), and promoting the south and east airflow. In addition, the Iranian Plateau weather system has a certain influence on the atmospheric circulation in East Asia through the upstream and downstream effects, which indirectly affects the regional pollution transportation. For the local accumulation component, the winter monsoon circulation system acts as the main weather system. Under the weak winter monsoon circulation, Mongolian high pressure system is weak and the western Pacific sea level pressure is higher, making the pollution contribution of local accumulation component higher.