Abstract:Conventional surface observation, soundings, comprehensive monitoring data of severe convective weather and NCEP analysis data are used to investigate statistically the spatiotemporal distribution, frontal characteristics and instability mechanisms of cold season (except June, July and August) elevated convections in northern China (32.5°-53.5°N, 105°-135°E) during a 16y period from 2000 to 2015.The events are concentrated in south central Hebei, western Shandong and north central Henan. The annual frequency distribution of elevated convections is bimodal, with a primary peak in February and a secondary peak in November. Cold front is the primary frontal system dominating the events. There exists thick cold surface air and strong temperature inversion when elevated convection occurs and more than half the events are triggered over the inversions with a temperature difference greater than 6℃. In addition, strong vertical wind shear (20-30 m·s-1) is frequently observed which is conductive of symmetric instability. The result further shows that conditional symmetric instability and frontogenetic forcing are the dominant mechanisms generating cold season elevated convections.