Abstract:The hailstorm process in Nanjing on 28 April 2015 is analyzed by using microwave radiometer, windprofiling radar, laser precipitation particle spectrometer and other automatic observation data. The results show that: (1) The combination of cold air associated with cold vortex over North China stretching towards the south and lowerlevel moisture air was found to be the circulation background of the severe hailstorm in Nanjing. The transportation of upperlevel cold advection and lowerlevel warm advection strengthened the formation of the extreme unstable atmosphere stratification. The lasting of surface mediumscale convergence center and convergence line played the triggering role in the hail weather. (2) In the hail clouds, strong updraft transport of lowlevel air sensible heat and latent heat led to significant increase of ambient temperature above 2 km altitude observed by microwave radiometer. When the hailstorm was in progress, continuous convergence of lowlevel moisture air and the hail fell into the melting area, causing an increase in lowlevel relative humidity and vapor density. Integrated liquid water (ILW) showed doublepeak structure. When the hailstorm process was initiated, ILW increased rapidly and reached maximum, which indicates the beginning of severe convective weather. (3) Comparing windprofile radar products in 3 stations, various vertical wind fields were observed in different regions. The hailstorm process in Luhe was closely related to the deep vertical wind shear at 0-6 km and the upperlevel jet stream, incorporating with the mesoscale cyclone on the ground and middlelevel mesocyclone, which made the hail process very intensive. The east movement of trough in lower troposphere was observed when Nanjing was hailing, while the vertical wind shear at lowerlevel forced continuous hail shooting at Gaochun. The conclusion makes a further understanding of environment condition about vertical structure during this heavy hailstorm event. (4) The microstructure characteristics of the precipitation at Luhe and Gaochun is discussed by using the laser precipitation spectrometers. The different droplet spectra characteristics corresponding with different precipitation types, the raindrop size distribution pattern in two stations basically showed the form of exponential distribution and multipeak structure respectively. Gaochun monitored hail with maximum diameter of 15 mm and Luhe was 5 mm. The raindrop velocity distribution both showed singlepeak type, and the terminal speed of particles during the severe raining period was between 2 and 5 m·s-1. (5) The severe hail supercell storm at Luhe showed typical features of hookshaped echo, suspended high strong echo area and TBSS.