ISSN 1000-0526
CN 11-2282/P
Overview of Climate Prediction of the Summer 2016 and the Precursory Signals
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In summer 2016, climatic condition in China was worse than normal. The average precipitation all over China was more than normal and floods were more severe than droughts. The disasters caused by floods in 2016 were much heavier than the flood disasters in 1983, but weaker than those in 1998. Extreme heavy rainfall occurred along the Yangtze River valley, leading to severe flood disasters. The preflood season in South China began earlier. The South China Sea summer monsoon started in the 5th pentad of May. Both the beginning and the ending dates of the Chinese Meiyu in the Yangtze River were later than normal, but its intensity was much stronger than normal. The rainy season in North China ended also later and the rainfall during the period was slightly more than normal with a positive percentage of 20%. All these features were forecasted well in the climate prediction issued in March 2016. The forecasts captured the facts that the mean intensity of all the typhoons during the year was stronger and they became more active after July. The forecasts also provided a correct prediction that it was warmer in most regions of China in summer 2016, especially in the northwestern China. The heat waves that occurred in late July in southern China were also predicted well. However, obvious errors appeared in the precipitation forecasts for northern China, especially the extreme flood in North China in July and the droughts in Northeast China in July and August. In making the forecasts, the potential influences of the super El Ni〖AKn~D〗o event and the possible roles of the tropical Indian Ocean were considered in great detail. Influenced by the tropical sea surface temperature anomaly, the western Pacific subtropical high was thought to be stronger than normal and extend more westward, and the East Asian summer monsoon would be weaker than normal. These prediction results were consistent with the observations, revealing the main causes for the floods along the Yangtze River.

    Reference
    Related
    Cited by
Get Citation
分享
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 14,2017
  • Revised:March 07,2017
  • Adopted:
  • Online: April 24,2017
  • Published:

WeChat

Mobile website