ISSN 1000-0526
CN 11-2282/P
Anlyisis on Verification of National Severe Convective  Weather Categorical Forecasts
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The objective assessment of forecast is an important part in the whole weather forecasting cycle. Based on the assessment, qualities of different operational forecasts can be noted and considered, so enhancing the level of forecast. The verification of national severe convective weather categorical forecasts from April to September during 2010-2015 is displayed by adopting the objective indices of the “pointtoarea” thret score (TS), the false alarm rate (FAR) and the missing alarm rate (MAR) in this paper. At the same time, analysis is carried out for different time interval forecasts of the annual mean verification index (mainly is from April to September of the year). Furthermore, the problems existing in the verification of severe convective weather categorical forecasts and its development in the future are also discussed. Over the past six years, in addition to the decrease of thunderstorm forecast TS during 2012-2013, there was a rising trend for TS of severe convective weather forecasting. For the 6-24 h forecasts, the TS of thunderstorm was 0.22-0.34, the TS of the shorttime heavy rain was 0.18-0.24, the TS of thunderstorm gale and hailstone was 0.01-0.07; for the 48-72 h forecasts, the TS of thunderstorm was 0.30-0.40, the TS of severe convective weather was 0.16-0.23. The TS of thunderstorm gale and hailstone was lower than that of the other two kinds of severe convective weather. The FAR of thunderstorm was twice as large as MAR of thunderstorm; the FAR of shorttime heavy rain was close to its MAR, while the FAR and MAR of thunderstorm gale and hailstone were all larger than 0.8. Compared with the TSs of similar products in Storm Prediction Center (SPC) of USA, the TSs of thunderstorm and shorttime heavy rain are higher than that of SPC and the TS of thunderstorm gale and hailstone is lower than that of SPC. Verification of typical case forecasting shows that the TS of systemic and widespread thunderstorm gale and hailstone is higher than that in other situations. The reason is that the predictability of systemic and widespread thunderstorm gale and hailstone is higher.

    Reference
    Related
    Cited by
Get Citation
分享
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 30,2016
  • Revised:September 28,2016
  • Adopted:
  • Online: February 14,2017
  • Published:

WeChat

Mobile website