Abstract:In this study, two land surface schemes (LSSs), Noah LSS and NoahMP LSS, are evaluated over the East Asian Region for January and July in 2013. Through the evaluation of 2m air temperature, 10m wind speed, surface temperature, soil temperature at depths of 5 cm and 70 cm, and soil moisture at depths of 5 cm and 25 cm, the results showed that: (1) Compared to Noah LSS, NoahMP LSS produces less surface sensible heat flux but more latent heat flux in January in most areas. NoahMP LSS produces more sensible heat flux except for Indian continent, western China and its adjacent regions, northeastern China in July, also more latent heat flux in most areas. The magnitude of increase in latent heat flux in July is larger than in January. (2) Compared to Noah LSS, NoahMP LSS improves the overall simulation of soil moisture and soil temperature over the East Asian Region. (3) Compared to Noah LSS, the bias and rootmeansquarederror of simulated 2m air temperature and 10m wind speed with NoahMP LSS decrease, especially the simulation for the 2m air temperature over Indian continent and cold climate regions is improved significantly. This study indicates the advantage of coupled NoahMP over the East Asian Region, and provides the basis for WRF/NoahMP in future operational application.