Abstract:Based on the NCEP/NCAR reanalysis data, sea surface temperature (SST) of NOAA, index of 74term circulation characteristics and weather observation data from 34 stations of Chongqing over 1961-2012, the climatic characteristics of spring continuous rain in Chongqing, the climate impact factors of the same period such as atmospheric circulation, the West Pacific subtropical high and early winter impact factors like SST, OLR, atmospheric circulation and the West Pacific subtropical high were analyzed. The results indicated that the spring continuous rain has so high frequency that Chongqing suffers serious spring continuous rain easily in March, followed by May. During the serious continuous rain period, the impacted range and the maintained time expanded. Furthermore, the probability of low temperature increases obviously. From the spatial distribution, the frequency of the spring continuous rain is high in Southeast China, but is relatively less in the northeastern and western parts. The spatial distribution of the continuous rain include two types: consistency in all areas and contrary in the west and east parts. In spring, lower 500 hPa geopotential heights are on the lower side in Barents Sea and the Tibetan Plateau region, higher in the east of Baikal Lake region, the general circulation anomalies over Eurasia midhigh latitude is beneficial to southward movement of cold air, and the West Pacific subtropical high weakens and retreats to east and south, which are the main factors for the occurrence of continuous rain in Chongqing. In early winters, the occurrence of the La Nina event, the development of the convection in the 150°E equator region, the establishment of high pressure ridge in the upper atmosphere in Okhotsk Sea area are conducive to the occurrence of spring continuous rain in Chongqing.