ISSN 1000-0526
CN 11-2282/P
Relationship Between Turbulent Energy in the Near Surface Layer and Atmospheric Boundary Layer Thermodynamic Structure over the Southeastern Side of Tibetan Plateau
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Based on the data observed from an intensive GPS sounding experiment and the comprehensive measurements of boundary layer in Dali of Yunnan Province during March, May and July 2008, the heights of CBL (convective boundary layer) and SBL(stable boundary layer) are calculated with approaches of temperature gradient and inversion layer strength and sensible heat flux, latent heat flux, turbulent kinetic energy, shear item and buoyancy item are obtained with eddy correlation method. The apparent heat source Q1, which is calculated from the NCEP reanalysis data, presents the similar diurnal cycles to the turbulent energy components and turbulent flux, reflecting a close connection of the plateau’s heat source variations with the diurnal changes in turbulent transport of hydrothermal process in the underlying surface. The comprehensive analysis on the vertical profiles of variables about turbulence and thermodynamics reveals the significant correlations among sensible heat flux, latent heat flux, apparent heat source and buoyancy item, implying an important contribution of thermodynamic turbulence transport to the Q1 in the near surface layer over the southeastern edges of the Tibetan Plateau. The buoyancy item and turbulent energy play an important role in formation of the near surface Q1, vortex dynamics, thermodynamic mixing structure. The lower layer Q1 and moisture sink are closely associated with the boundary layer height. This comprehensive analysis describs a physical linkage of thermodynamic turbulence transport with atmospheric heat source, vortex dynamical process and thermodynamic mixing layer structure to understand the interaction of turbulence convection and atmospheric thermodynamic process in the active convection region over the southeastern edges of the Tibetan Plateau.

    Reference
    Related
    Cited by
Get Citation
分享
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 20,2014
  • Revised:August 01,2014
  • Adopted:
  • Online: November 18,2014
  • Published:

WeChat

Mobile website