Abstract:By using CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) data and MM5 numerical simulation output data, the characteristics of vertical structure of dusty layers and its accompanying dynamic and thermal structure in a severe dust storm which occurred in North China from 19 to 22 March 2010 were studied. The results show that in the mature period of dust storm, the dusty layer distributes almost in the whole troposphere from 2 to 9 km. The vertical mixture caused by the cold frontal uplifting and the sinking after the front induces an uniform distribution of dust particles. After that, during the long distance transportation period of dust, the dusty layer is separated to two layers clearly, located at the lower troposphere (below 700 hPa) and the middle upper troposphere (from 600 to 300 hPa) respectively. In each stage of the dust storm process, the weak vertical change of wind speed, potential and equivalent potential temperature are closely coordinated with the dusty layers, which indicates that the neutral mixed layer maintains in the dusty layer. Between the two dusty layers, the frontal region of potential and equivalent potential temperature appear. Meanwhile, the evident tropopause fold and obvious declining of large potential vorticity appear. According to it, when the tropopause sustains at a higher altitude, the dusty layers are expanded to a higher altitude as well. Otherwise, the dusty layers are lower. It should be noted that in the dust long distance transportation stage, a banding area located at 40°N from 7 km to 9 km appears in the stratosphere, indicating that in this dust storm process, parts of the dust particles are transported from troposphere to stratosphere. And it also forms a perisistent dust transportation belt in the stratosphere, so it can be regarded as an observational evidence to prove the troposphere stratosphere transportation of dust aerosol and the transmission of dust aerosol in stratosphere.