Abstract:By using conventional meteorological observations, real time operational numerical forecast models, ECMWF ERA Interim global reanalysis data (1.5°×1.5°) and NCEP global reanalysis data (1°×1°), a preliminary analysis is made about the reason that Super Typhoon Megi (1013) abruptly northward recurvated after it moved into the South China Sea. And three subjective forecasts of CMA, JMA and JTWC and some operational numerical model forecasts for Megi’s abruptly northward recurvature are verified and estimated. The results show that the main reason that Megi’s abruptly northward recurvature in the South China Sea is the mergence of the equatorial buffer zone and the subtropical high ridge located at the east side of Megi while the Southern Hemispheric crossequatorial flow northward poured. The analysis also shows that the multimodel consensus forecast or the super ensemble prediction of tropical cyclone track is an effective way to solve their uncertainty when operational numerical forecast models show large differences for the track of a tropical cyclone. Therefore it is necessary to strengthen the development of integrated application platform about multimodel consensus forecast or superensemble forecast for tropical cyclone track. Then it is essential to further improve the existing operational tropical cyclone forecast work flows on the basis of the platform development.