本文已被:浏览 0次 下载 0次
投稿时间:2024-07-18 修订日期:2025-04-08
投稿时间:2024-07-18 修订日期:2025-04-08
中文摘要: 2023年6月29—30日,湖南西部突发特大暴雨,预报员及数值模式预报均与实况偏差较大。采用多源观测资料、ERA5再分析资料和模式预报数据对特大暴雨的中尺度特征和预报偏差的可能原因进行了诊断分析。结果表明:高空槽后西北气流引导冷空气南下,与夜间加强的西南暖湿气流汇合,导致了特大暴雨的发生。特大暴雨是由一个准静止后向传播中尺度对流系统(MCS)产生的,该MCS由多个强烈发展的γ-MCS合并而成,表现为一条有组织的线状回波带。在有利的环境背景下,边界层辐合线的长时间维持、低空急流的风速脉动和低层辐合高层辐散的垂直结构导致对流单体的触发和组织,MCS的合并加强、后向传播以及对流单体“列车效应”是特大暴雨产生的重要原因。由于数值模式低层动力、热力场的预报偏差,预报员对模式预报的订正能力不足,以及湘西地区复杂的地形地貌影响,导致短期时效主观预报出现较大偏差。因此,需使用高时空分辨率的地面加密自动气象站资料、卫星资料和雷达资料分析中尺度环境场的要素变化,加强短时临近预报,及时发布预警信号。
中文关键词: 特大暴雨,中尺度特征,预报偏差,风速脉动
Abstract:From 29 to 30 June 2023, a localized abrupt severe torrential rain occurred in the western region of Hunan Province, but forecasters and numerical models both failed to forecast the rainfall intensity. In this study, the mesoscale characteristics and possible causes of forecast biases are analyzed based on the multiple observations data, ERA5 reanalysis data and numerical forecast products. The results show that the northwest air flow behind the upper-level trough drove the cold air to the south and merged with the southwest warm-humid air flows which were strengthened at night, which led to the occurrence of this process. The severe torrential rain was generated by a backward propagation of quasi-stationary mesoscale convective system (MCS), which was composed of multiple strongly developing γ-MCSs, manifested as an organized linear echo band. Under the favorable environmental background, the long-time maintenance of the boundary layer convergence line, the wind velocity fluctuation of the low-level jet and the vertical structure of low-level convergence and high-level divergence contributed to the triggering and organization of the convective cells. The merging, strengthening backward propagation of MCS and the train effect of convective cells were important causes for the severe torrential rain. Significant errors were made in the short-time subjective forecasts because of the forecast biases of the low-level dynamic and thermodynamic fields of the numerical models, the deficiency of forecasters’ ability to correct the model forecast, and the complex topography of western Hunan Province. Therefore, it is very crucial to use the automatic weather station data, satellite data and radar data with high spatio-temporal resolution to analyze the changes of the mesoscale environmental conditions, strengthen the short-time nowcasting and issue early warning in time.
文章编号: 中图分类号: 文献标志码:
基金项目:中国气象局预报与网络司复盘总结专项(FPZJ2024-087)、湖南省自然科学基金重大项目( 2021JC0009)和湖南省气象局创新发展专项(CXFZ2025-ZDXM01)共同资助
| 作者 | 单位 |
| 陈红专 | 湖南省怀化市气象局,怀化 418000 气象防灾减灾湖南省重点实验室,长沙 410118 |
| 张昆 | 湖南省怀化市气象局,怀化 418000 气象防灾减灾湖南省重点实验室,长沙 410118 |
| 曾志明 | 湖南省怀化市气象局,怀化 418000 气象防灾减灾湖南省重点实验室,长沙 410118 |
引用文本:
陈红专,张昆,曾志明,2025.2023年6月湘西一次特大暴雨中尺度特征与预报偏差分析[J].气象,51(12):1596-1607.
CHEN Hongzhuan,ZHANG Kun,ZENG Zhiming,2025.Analysis of Mesoscale Characteristics and Forecast Bias of a Severe Torrential Rain in Western Hunan Province in June 2023[J].Meteor Mon,51(12):1596-1607.
陈红专,张昆,曾志明,2025.2023年6月湘西一次特大暴雨中尺度特征与预报偏差分析[J].气象,51(12):1596-1607.
CHEN Hongzhuan,ZHANG Kun,ZENG Zhiming,2025.Analysis of Mesoscale Characteristics and Forecast Bias of a Severe Torrential Rain in Western Hunan Province in June 2023[J].Meteor Mon,51(12):1596-1607.
