###
气象:2025,51(11):1433-1454
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
“百米级、分钟级”短时临近预报技术的进展与展望——以睿思(RISE)发展路径为例
陈明轩,宋林烨,杨璐,程丛兰,曹伟华,吴剑坤,刘泓君,马超
(北京城市气象研究院,北京 100089; 灾害天气科学与技术全国重点实验室,北京 100081; 中国人民解放军95825部队气象台,湖北孝感 432000)
Progress and Prospect of the “100-Meter-Scale, Minute-Level-Update” Nowcasting Technology—A Case Study of the RISE Development Path
CHEN Mingxuan,SONG Linye,YANG Lu,CHENG Conglan,CAO Weihua,WU Jiankun,LIU Hongjun,MA Chao
(Institute of Urban Meteorology, CMA, Beijing 100089; State Key Laboratory of Severe Weather Science and Technology, Beijing 100081; Meteorological Observatory of Unit 95825 of the People’s Liberation Army, Hubei Xiaogan 432000)
摘要
图/表
参考文献
相似文献
本文已被:浏览 8次   下载 12
投稿时间:2025-07-28    修订日期:2025-11-03
中文摘要: 本文介绍了针对北京2022年冬奥会气象服务研发的“百米级、分钟级”多源数据快速融合预报系统——睿思(RISE),并重点描述了在“后冬奥”时代,通过发展、集成一系列关键技术以及应用机器学习和深度学习等方法,实现了在“百米级、分钟级”技术框架内的强降水和雷暴大风的精细化短时临近预报、对流初生临近预报等功能。新发展、集成的技术方法包括:格点降水融合分析偏差订正、降水机器学习短时临近预报、阵风(雷暴大风)动力-统计及深度学习短时临近预报、融合卫星监测和风暴追踪的对流初生临近预报、多源多尺度数值预报集成等。通过检验评估表明,睿思系统中集成的新技术方法对提升汛期降水和雷暴大风的预报精细度和准确率具有优势,特别是在0~6 h的短时临近时段内预报效果最为显著。最后,探讨了“百米级、分钟级”预报技术未来发展面临的挑战与可能路径。
Abstract:This study presents the development and implementation of the Rapid-Refresh Integrated Seamless Ensemble (RISE) forecasting system, an innovative multi-source data fusion system designed to provide “100-meter-scale, minute-level-update” weather forecasts. It was originally created to support meteorological services during the Beijing 2022 Olympic and Paralympic Winter Games. Here, this article demonstrates the significant improvements over several years after the games in short-time forecasting and nowcasting capabilities, which have been achieved through the integration of key technologies and the application of machine learning and deep learning methods within the high-resolution forecasting framework of the RISE system. The system’s novel key features are reflected in the refined short-time forecasting and nowcasting for heavy precipitation and thunderstorm gale, as well as in the nowcasting for the initiation of severe convection. The technologies integrated into the RISE system include: a bias-corrected, high-resolution gridded precipitation analysis scheme, the machine learning-based gridded precipitation short-time forecasting and nowcasting algorithms, a novel dynamic-statistical ensemble method for gust prediction using multi-source data fusion, an interpretable deep learning model for nowcasting convectively high winds or thunderstorm gale, a nowcasting method for convective initiation that integrates satellite observations and storm tracking, and an integration scheme for multiple numerical models. Then, comprehensive verification analyses confirm that these methodologies have significantly enhanced the forecast accuracy for precipitation and thunderstorm gale, particularly for the 0-6 h short-time forecasting and nowcasting during flood seasons. Finally, this study concludes with a critical discussion of existing challenges and potential future directions for “100-meter-scale, minute-level-update” weather forecasting.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2022YFC3004103)、国家自然科学基金项目(42275012)、北京市自然科学基金项目(8212025)、中国气象局重点创新团队(CMA2022ZD04、CMA2022ZD07)共同资助
引用文本:
陈明轩,宋林烨,杨璐,程丛兰,曹伟华,吴剑坤,刘泓君,马超,2025.“百米级、分钟级”短时临近预报技术的进展与展望——以睿思(RISE)发展路径为例[J].气象,51(11):1433-1454.
CHEN Mingxuan,SONG Linye,YANG Lu,CHENG Conglan,CAO Weihua,WU Jiankun,LIU Hongjun,MA Chao,2025.Progress and Prospect of the “100-Meter-Scale, Minute-Level-Update” Nowcasting Technology—A Case Study of the RISE Development Path[J].Meteor Mon,51(11):1433-1454.