本文已被:浏览 5次 下载 95次
投稿时间:2024-02-19 修订日期:2025-01-13
投稿时间:2024-02-19 修订日期:2025-01-13
中文摘要: 利用WRF模式中8种云微物理方案,模拟2020年4月22日发生在海南岛的一次飑线降水过程,对比分析不同云微物理方案对模拟结果的影响。结果表明:不同云微物理方案对地面降水、雷达组合反射率,以及热力、动力场的模拟存在显著差异,其中Thompson方案模拟的降水落区与中心强度最接近实况,WSM6方案在最大降水时刻模拟的雷达组合反射率在强度、范围和形态上与实况相似;在热力、动力场中,各方案均模拟出了地面冷池、低层垂直风切变与冷池出流等飑线特征,降水中心对应强上升气流区,低层辐合与高层辐散的散度场结构有利于强对流出现和降水形成,但在强度和分布上不尽相同。从云微物理特征上看,液相粒子主要分布在5 km以下,冰相粒子在6 km以上,云水的模拟结果对云微物理方案的选择响应最弱,雪和霰的分布则表现出较高的敏感性,这是由于不同云微物理方案对雪、霰生成、转化与消耗的过程处理存在差异,且同一云微物理过程在各方案中的转化率也不尽相同。
中文关键词: 云微物理方案,飑线,数值模拟,海南岛
Abstract:Eight different cloud microphysical schemes in the WRF model are used to simulate the precipitation process caused by a squall line in Hainan Island on 22 April 2020, and the effects of different cloud microphysical schemes on the simulation of the Hainan Island squall line are comparatively analyzed. The results show that different cloud microphysical schemes have significant differences in simulating the surface precipitation, radar composite reflectivity, thermodynamic and dynamic fields. Among them, the precipitation area and center intensity simulated by Thompson scheme are most close to the actual observations, and the radar composite reflectivity in intensity, range and pattern simulated by WSM6 scheme at the time of heaviest precipitation is similar to the actual observations. In the thermodynamic and dynamic fields, the characteristics of squall line such as surface cold pool, low-level vertical wind shear and cold pool outflow can be simulated by all schemes, and the precipitation center corresponds to the strong updraft zone. The divergence structure of low-level convergence and high-level divergence is conducive to the occurrence of severe convection and the formation of precipitation, but there exist differences in the intensity and distribution of precipitation. According to the cloud microphysical characteristics, the liquid-phase particles are mainly distributed below 5 km, and the ice-phase particales are above 6 km. The simulation results of cloud water show the weakest response to the selection of cloud microphysical schemes, while the distributions of snow and graupel show the high sensitivity. This is because different cloud microphysical schemes have different processing ways for the generation, transformation and consumption of snow and graupel, and the conversion rate of the same microphysical process is also different in different schemes.
文章编号: 中图分类号:P435 文献标志码:
基金项目:国家自然科学基金项目(42365011)、国家重点研发计划(2023YFC3007600)、中国气象局创新发展专项(CXFZ2023J039)和海南省自然科学基金项目(122QN424、420RC754、421QN372)共同资助
引用文本:
毛志远,黄彦彬,付丹红,曾敏,邢峰华,敖杰,王雨,2025.WRF模式不同云微物理方案对海南岛一次飑线过程的数值模拟研究[J].气象,51(3):298-312.
MAO Zhiyuan,HUANG Yanbin,FU Danhong,ZENG Min,XING Fenghua,AO Jie,WANG Yu,2025.Numerical Simulation of a Squall Line Process in Hainan Island by Different Cloud Microphysical Schemes of WRF Model[J].Meteor Mon,51(3):298-312.
毛志远,黄彦彬,付丹红,曾敏,邢峰华,敖杰,王雨,2025.WRF模式不同云微物理方案对海南岛一次飑线过程的数值模拟研究[J].气象,51(3):298-312.
MAO Zhiyuan,HUANG Yanbin,FU Danhong,ZENG Min,XING Fenghua,AO Jie,WANG Yu,2025.Numerical Simulation of a Squall Line Process in Hainan Island by Different Cloud Microphysical Schemes of WRF Model[J].Meteor Mon,51(3):298-312.
