###
气象:2024,50(12):1531-1541
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于XGBoost的西北太平洋台风快速增强预报模型
渠鸿宇,董林,马新野,向纯怡,黄奕武
(国家气象中心,北京 100081; 中科星图维天信科技股份有限公司,北京 101399)
Forecast Model of Northwest Pacific Typhoon Rapid Intensification Based on XGBoost
QU Hongyu,DONG Lin,MA Xinye,XIANG Chunyi,HUANG Yiwu
(National Meteorological Centre, Beijing 100081; Zhongke Xingtuwei Tianxin Technology Co. Ltd., Beijng 101399)
摘要
图/表
参考文献
相似文献
本文已被:浏览 30次   下载 19
投稿时间:2024-02-05    修订日期:2024-08-14
中文摘要: 台风强度预报,特别是台风快速增强(rapid intensification,RI)预报仍是目前台风预报中非常棘手的问题。基于XGBoost模型,利用2015—2020年NCEP GFS分析和预报数据以及IBTrACS数据分别构建了西北太平洋台风未来24 h的RI预报模型(FM)和预报订正模型(FCM)。通过对FM进行预报因子贡献分析发现,对模型预报影响最大的5个因子依次为台风丰满度、200 hPa平均温度、过去6 h的强度变化、潜势强度和200 hPa平均散度。利用2021—2022年数据对模型进行独立检验,结果表明:FM在利用分析数据测试时,具有较高的准确度,漏报率(FNR)、空报率(FPR)和TS分别为0.25、0.24和0.32。但由于预报因子预报误差的影响,使得FM在实时预报中的性能下降(FNR、FPR和TS分别为0.32、0.26和0.27),而使用预报数据构建的FCM则可以通过学习预报误差进行有效订正,从而有效减小预报误差的影响。FCM在实时预报检验中的FNR、FPR和TS分别为0.28、0.25和0.30,相较FM,FNR和FPR分别降低了0.04和0.01,TS提升了0.03。FCM方便易用,可为台风强度和台风RI的实时预报提供参考。
Abstract:The forecast of typhoon intensity, especially the rapid intensification (RI) forecast, is still a very challenging difficulty in current typhoon forecasting. Based on the XGBoost model, this article uses the NCEP GFS analysis and forecast data in 2015-2020, and IBTrACS data to construct RI forecast model (FM) and forecast correction model (FCM) for typhoons in the Northwest Pacific 24 h in advance. Through predictor contribution analysis of the FM, we have found that the five factors that have the greatest impact on model forecasts are typhoon abundance, average temperature at 200 hPa, intensity changes over the past 6 h, potential intensity, and average divergence at 200 hPa. The model is independently tested with the data in 2021-2022, and the results show that the FM has higher accuracy when tested by analytical data, with false negative rate (FNR), false positive rate (FPR) and threat score (TS) being 0.25, 0.24 and 0.32, respectively. However, due to the influence of forecast errors caused by forecast factors, the performance of FM in real-time forecasting decreases (FNR, FPR and TS are 0.32, 0.26 and 0.27, respectively). The FCM constructed based on forecast data can effectively correct the forecast errors by learning them, thereby reducing the impact of forecast errors. The FNR, FPR and TS of the FCM in real-time forecasting tests are 0.28, 0.25 and 0.30, respectively; compared with the FM, the FNR and FPR are reduced by 0.04 and 0.01, but the TS rises by 0.03. Thus, the FCM is convenient and easy to use, and can provide reference for real-time forecasting of typhoon intensity and typhoon RI.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2023YFC3107902)、中国气象局创新发展专项研发项目(CXFZ2024J006)共同资助
引用文本:
渠鸿宇,董林,马新野,向纯怡,黄奕武,2024.基于XGBoost的西北太平洋台风快速增强预报模型[J].气象,50(12):1531-1541.
QU Hongyu,DONG Lin,MA Xinye,XIANG Chunyi,HUANG Yiwu,2024.Forecast Model of Northwest Pacific Typhoon Rapid Intensification Based on XGBoost[J].Meteor Mon,50(12):1531-1541.