###
气象:2022,48(11):1361-1372
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
卷积门控循环单元神经网络与光流法在临近预报中的适用性研究
张智察,罗玲,陈列,李文娟,赵放,黄旋旋,钟琦,罗然
(浙江省气象台,杭州 310017; 中国气象局气象干部培训学院,北京 100081)
Applicability of Convolutional Gated Recurrent Unit Neural Network and Optical Flow Method in Nowcasting
ZHANG Zhicha,LUO Ling,CHEN Lie,LI Wenjuan,ZHAO Fang,HUANG Xuanxuan,ZHONG Qi,LUO Ran
(Zhejiang Meteorological Observatory, Hangzhou 310017; China Meteorological Administration Training Centre, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 335次   下载 1387
投稿时间:2021-07-21    修订日期:2021-12-28
中文摘要: 深度学习目前在临近预报的雷达外推应用中发展迅速,对其适用性的客观评估是业务应用的重要前提。利用粤港澳大湾区雷达回波开放数据集,基于回波图像形态、命中率、虚警率以及技巧评分,对比评估了卷积门控循环单元神经网络(ConvGRU)与基于半拉格朗日平流方案的快速稠密光流法(OF)在未来120 min雷达回波外推中的效果,结果表明ConvGRU与OF虽外推效果良好,但均不适用于外推回波的生成、加强以及局地分散性特征,且外推效果显著受到天气过程种类的影响。其中,ConvGRU可能更适用于外推分布范围适中且运动简单的回波的主体位置,但回波的强度不稳定且形态模糊,其无法表征回波的精细化运动规律与演化特征;OF更适用于外推50 dBz以上的强回波,且回波结构更优,但在回波缺测区与强度少变区内的外推易存在很大的分布偏差。深度学习的数据集样本数是决定模型效果的最重要原因之一,但样本数实际未能全面覆盖各类天气过程,总体仍偏少,预报业务需进一步扩增。
Abstract:Deep learning has been developed at an unprecedend speed in radar extrapolation of forecasting, so objective assessment of its applicability is an important prerequisites for operational applications. By utilizing the radar echo open data set of Guangdong-Hong Kong-Macao Greater Bay Area, the performances of 120 min radar echo extrapolation 〖JP2〗by convolutional gated recurrent unit neural network (ConvGRU) and fast dense optical flow (OF) methods based on semi-lagrangian advection scheme have been compared and evaluated based on the echo morphology, probability of detection (POD), false alarm rate (FAR) and threat score (TS). The results show that although the two methods both have effective extrapolation performance, they are not applicable to extrapolate the echo generation, enhancement and locally dispersed.
文章编号:     中图分类号:P456    文献标志码:
基金项目:国家重点研发计划(2018YFC1507606)、浙江省科技厅重点研发计划(2022C03150、2017C03035)、国家自然科学基金项目(41505079、42030611、42075154)和浙江省基础公益研究计划项目(LGF19D050002)共同资助
引用文本:
张智察,罗玲,陈列,李文娟,赵放,黄旋旋,钟琦,罗然,2022.卷积门控循环单元神经网络与光流法在临近预报中的适用性研究[J].气象,48(11):1361-1372.
ZHANG Zhicha,LUO Ling,CHEN Lie,LI Wenjuan,ZHAO Fang,HUANG Xuanxuan,ZHONG Qi,LUO Ran,2022.Applicability of Convolutional Gated Recurrent Unit Neural Network and Optical Flow Method in Nowcasting[J].Meteor Mon,48(11):1361-1372.