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Abstract: The National Climate Centre has made accurate predictions for the flood season in 2025, that is,
the principal rain belt in central and eastern China would mainly dwell over the northern regions during the
summer months (June to August), with below-normal precipitation in the part south of the Yangtze River. The
predictions regarding the monsoon behavior and the progression of rainy season aligned closely with obser-
vations. Notably, the prediction correctly indicates an earlier onset, extended duration, exceptionally
heavy rainfall during the rainy season in North China, and the relatively severe flooding in the Haihe River
Basin and the middle-lower reaches of Yellow River Basin. However, certain shortcomings still existed in

the summer precipitation prediction. Firstly, the extremity of precipitation in the northern part of North
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China was underestimated. Secondly, the precipitation prediction for the Huaihe River Basin deviated from
observations. In the updated midsummer (July to August) prediction issued in June 2025, precipitation in
central and eastern China was predicted to follow an “above normal over both North and South China, below
normal over the Yangtze River Basin” pattern. This prediction anticipated a westward expansion and
northward contraction of the primary rain belt in northern China and a northward and westward extension
of the secondary rain belt in South China. It also highlighted a reduction of precipitation in the Yangtze
River and Huaihe River (Jianghuai) basins and emphasized the likelihood of anomalous conditions at the
same time, which was proved to match with the observations. In March 2025, the flood season prediction
was made based on objective methods including dynamical models and multi-model ensembles, etc. The ap-
plication of these methods was guided by evaluating their predictive skills over the past decade. Mean-
while, the combined influence of multiple precursor signals at interdecadal and interannual scales on the
East Asian summer monsoon and summer precipitation in China was comprehensively considered and ana-
lyzed. As a result, the prediction of the intensified East Asian summer monsoon and the primary rain belt
located over northern China in 2025 was successfully worked out. For the midsummer precipitation predic-
tion, the influence of spring Eurasian snow cover was additionally incorporated. In addition to the above
analyses, key scientific and technical challenges in flood season prediction are discussed in this paper, along
with potential directions for our future efforts.

Key words: flood season prediction, extreme precipitation in North China, East Asian summer monsoon,
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Fig. 1 (a) Distribution of precipitation anomaly percentages in China in summer and

(b) corresponding prediction issued at the end of March in 2025
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Fig. 2 (a) Distribution of precipitation anomaly percentages in China in mid-summer

and (b) corresponding prediction isssued at the end of June in 2025
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Table 1 Comparison of predicted and observed rain season processes
in eastern China in the 2025 flood season
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Table 2 Comparison of predicted and observed tropical cyclones in Northwest Pacific

and the South China Sea in the 2025 flood season
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(a) Distribution of temperature anomalies in China in summer and

(b) corresponding prediction isssued at the end of March in 2025
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