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Abstract: To enhance the forecasting capability for flash heavy rainfall (FHR) in the Beijing Daxing Inter-
national Airport (PKX) region, by using minutely and hourly data from May to September during 2014 —
2023, combined with ERA5 reanalysis data, this paper classifies circulation patterns and analyzes the pre-
cipitation as well as their spatio-temporal distribution characteristics and ambient conditions. The results
show that FHR processes are classified into five circulation patterns, listing in descending order according
to their percentages as follows: the Mongolian vortex and trough type, the western Pacific subtropical high

edge type, the interaction type of westerly trough and western Pacific subtropical high, the Huang-Huai
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vortex inverted trough type, and the Northeast China cold vortex rear type. The annual average frequency
of FHR is relatively higher in the eastern part of the PKX region, showing an upward fluctuating trend
over the past decade. FHR events are most frequent in July and August, with that in July accounting for
more than half of the occurrences. The diurnal variation exhibits a unimodal distribution, peaking in the
period from 22:00 BT to 23:00 BT, with durations generally ranging from 40 to 80 min. The western Pa-
cific subtropical high edge type, the interaction type of westerly trough and western Pacific subtropical
high, and the Northeast China cold vortex rear type have distinct temporal characteristics, with the former
two being predominantly nocturnal and the latter occurring more frequently in the afternoon. Intense FHR
(=50 mm » h™') primarily occurs under western Pacific subtropical high edge type, and Mongolian vortex
and trough type. Significant differences are observed in the ambient conditions under different circulation
patterns. The western Pacific subtropical high edge type, interaction type of westerly trough and western
Pacific subtropical high, and the Huang-Huai vortex inverted trough type are characterized by abundant
moisture, with the vertically integrated precipitable water exceeding 50 mm and high convective available
potential energy, whereas the Huang-Huai vortex inverted trough type exhibits strong moisture conver-
gence despite weaker thermal instability, often featuring boundary-layer easterly jets that sustain precipita-
tion. The Northeast China cold vortex rear type, despite limited integrated moisture, is benefitial for lo-
calized heavy rainfall through strong low-level warm advection and significant upper-lower atmospheric
temperature differences, favoring the development of localized heavy rainfall.
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Fig. 2 Circulation characteristics of the Mongolian vortex and trough type

(a) composite field of 500 hPa geopotential height (contour, unit: dagpm) and its anomaly (colored) ,

(b) anomalies of 850 hPa wind field (vector) and temperature field (colored), (c¢) composite field of

925 hPa moisture flux divergence (colored, unit; 1077 g+ s

"« cm %+ hPa ') and the anomaly of

moisture flux (vector, unit: g+ s ' «cm ' « hPa ')
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Fig. 3 Circulation characteristics of the western Pacific subtropical high edge type

(a) composite field of 500 hPa geopotential height (contour, unit: dagpm) and its anomaly (colored) ,

(b) anomalies of 850 hPa wind field (vector) and temperature field (colored), (¢) composite field of

925 hPa moisture flux divergence (colored, unit; 107" g+ s ' « cm ? » hPa ') and the anomaly of

moisture flux (vector, unit; g+ s ' «cm ' « hPa ')

40°NE

30

90 100 110 120 130 140°E 110

-5 -3 -1 1 3 5 dagpm —4 -2

120 130°E

P4 VG Ofe R R v AR B AR R R R IR AR AE
(a)500 hPa {3 # 25 B & W37 (B 2%, 547 - dagpm) FIEE V37 (B ) , (b)850 hPa K37 B (R ) Fil
I BE 5 S (B 5 (00925 hPa /K P53 WU & Bl (B0, 32107 g+ ™'« em ™ « hPa™ )
AUKVRE R (i< Bfi:g+s ' »cm '« hPa ')

Fig. 4 Circulation characteristics of interaction type of westerly trough and the western Pacific subtropical high

(a) composite field of 500 hPa geopotential height (contour, unit: dagpm) and its anomaly (colored) ,

(b) anomalies of 850 hPa wind field (vector) and temperature field (colored). (c¢) composite field of

925 hPa moisture flux divergence (colored, unit; 10" g+ s '+ cm ? « hPa ') and the anomaly of

moisture flux (vector, unit; g+ s ' «cm ' « hPa ')
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Fig. 5 Circulation characteristics of the Huang-Huai vortex inverted trough type
(a) composite field of 500 hPa geopotential height (contour, unit: dagpm) and its anomaly (colored) ,
(b) anomalies of 850 hPa wind field (vector) and temperature field (colored), (¢) composite field of
925 hPa moisture flux divergence (colored, unit; 107" g+ s ' « cm ? » hPa ') and the

anomaly of moisture flux (vector, unit: g+ s '+ cm ' « hPa ')
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Fig. 6 Circulation characteristics of the Northeast China cold vortex rear type
(a) composite field of 500 hPa geopotential height (contour, unit: dagpm) and its anomaly (colored) ,
(b) anomalies of 850 hPa wind field (vector) and the composite field of temperature advection (colored) ,
(¢) composite field of 925 hPa moisture flux divergence (colored, unit; 10" g+ s '+ cm * « hPa ')

and the anomaly of moisture flux (vector, unit; g+ s '« cm ' « hPa ')
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Fig. 7 Spatial distribution of the annual mean

FHR frequency in the PKX region from May

to September during 2014—2023
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