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Characteristics and Causes of the Anomalous Change

in the Intensity of Super Typhoon Yagi
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Abstract: Based on the station observation, sounding data, FY-4B satellite images, Doppler weather radar
data and ERA5 reanalysis data, the characteristics and causes of the anomalous change in the intensity of
Super Typhoon Yagi in 2024 are analyzed. It is found that Typhoon Yagi is the stongest landfalling au-
tumn typhoon in China since 1981, and it maintained super typhoon level (SuperTY) in the South China
Sea for 64 h, making it the longest-lasting super typhoon in the region. Typhoon Yagi experienced three
rapid intensification (RI) processes. In one of these processes, it reached the level of extreme rapid inten-
sification (ERI), with its 12 h and 24 h intensity increase amplitudes being the highest in the South China
Sea since 1981. The robust southwestern monsoon supplied abundant moisture for the typhoon develop-
ment, while the stable subtropical high and continental airflow transported convectively unstable air masses
from land toward the typhoon’s core, which enhanced the atmospheric potential instability near the
typhoon circulation. Meanwhile, the weakened environmental vertical wind shear and favorable upper-level
outflow conditions collectively facilitated the RI and the sustained peak intensity. The sea surface tempera-

ture in the northern South China Sea exceeded 30C, 1 — 2C above normal, providing substantial
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latent heat flux to the atmosphere. During Yagi’s RI, a significant increase in kinetic energy within the ty-

phoon’s domain was observed. The primary driver of this kinetic energy growth was a sharp rise in kinetic

energy production. Moreover, the vertical and horizontal kinetic energy transports also contributed a lot.

Key words: Typhoon Yagi, super typhoon, rapid intensification (RI), South China Sea, monsoon, sub-

tropical high, kinetic energy budget
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at sea surface in the center of Typhoon Yagi from 1 to 7 September 2024
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(¢) kinetic energy production, (d) residual term
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